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Orongorongo Valley:  
 an important long-term research area

Ecological models – their form and function

Mention ecological modelling and many 

people run screaming in horror. For some, 

this response is due to visions of bearded 

ecologists working with imaginary and 

irrelevant data, but for most it’s because 

people think modelling is full of complex 

mathematical equations that are far too 

diffi  cult to comprehend. Mandy Barron 

off ers a diff erent perspective and here seeks 

to explain and encourage their wider use.

Although equations can be daunting at 

fi rst, Mandy reports that if you persevere 

with them, they provide a far more precise, 

concise and universal method of expressing 

a hypothesis about how an ecological 

system works than any long-winded verbal 

or written description. The fi rst step in 

model development – writing it out – can 

be a useful exercise in itself because it 

forces researchers to clarify their mental 

model, make their assumptions explicit and 

to identify any knowledge gaps. Unlike their 

runway counterparts, i.e. fashion models, 

ecological models are not ornamental but 

are developed to understand and explain 

fi eld or laboratory observations and to 

make predictions about how systems 

respond. For example, Whitehead and 

Tompkins (pp. 12–13) determined which 

mode of transmission best described 

the epidemiology of a new disease in 

Tasmanian devils in order to predict its 

impact on devil populations.

Thus, models are an abstract description or 

generalisation of a system. They do not, nor 

should they attempt to describe all of the 

complexity and heterogeneity in a natural 

system, as by the time this is done, the 

need for the model would have long since 

passed. The mark of a good model is that it 

is useful, i.e. fi t for the purpose intended, be 

that explaining patterns in data, generating 

testable hypotheses, or identifying pivotal 

processes or parameters that need more 

data (e.g. Jones et al., p. 16, are collecting 

data on the breeding success of grey-faced 

petrel to build a population model that 

can then be used to assess the eff ects of 

rats on bird abundance). Modelling is an 

indispensable tool for ecological sciences 

where it is often diffi  cult, impossible, 

too expensive or unethical to conduct 

replicated, manipulative experiments, 

because it allows notional experiments to 

be conducted or a variety of management 

interventions on modelled systems to 

be examined (e.g. Warburton, pp. 14–15, 

models the profi tability of harvesting 

possums for fur over a range of initial 

possum densities).

Besides the equations, 

another aspect that puts 

people off  modelling 

is the jargon that 

arises from the diversity 

of models available 

(Fig.). People often draw a 

distinction between “statistical” or 

“empirical” models versus “theoretical” or 

“mechanistic” models. The former are fi tted 

to data gathered as part of an experiment 

and are used to explain patterns and draw 

inference particular to that system (e.g. 

Gormley et al., pp. 10–11, on distribution 

modelling of sambar deer), while the latter 

use mechanistic functions to describe 

general ecological processes and are used 

for understanding and prediction.

Systems can be modelled in “continuous 

time”, which calculates rates of change 

in infi nitesimally small time-steps, using 

diff erential equations, and is useful when 
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modelling populations of species that have 

overlapping generations. Alternatively 

systems can be modelled in “discrete time”, 

which, as the name implies, models the 

state of the system at relatively large time-

intervals, using diff erence equations, and 

is useful when modelling populations of 

species that have only one generation per 

annum.

Another dichotomy is between 

“deterministic” and “stochastic” models. 

For a given set of parameter values, a 

deterministic model will produce the same 

results every time whereas a stochastic 

model will draw the value for a model 

parameter from a probability distribution 

and thus will produce diff erent results with 

each run.

“Analytical” models are usually theoretical 

models where the mathematical equations 

can be solved algebraically to understand 

the model’s behaviour (e.g. Holland, pp. 6–7, 

explores the consequences of changing 

possum density and foraging behaviour 

on mortality rates of kāmahi in a herbivory 

model). Often models are too complex to 

solve directly and/or include stochasticity 

(random behaviour), so they can only be 

determined by “simulation”, which means 

running the model multiple times, usually 

over a range of parameter values, then 

collating and analysing the outputs (e.g. 

Shepherd et al., pp. 22–23, in his description 

of the national possum model).

There’s also a new class of model gaining 

popularity that promises to bridge the 

gap between statistical and theoretical 

models, but unfortunately also has its 

own jargon! “Bayesian” statistical models 

essentially involve updating “prior” or 

previously held beliefs in a hypothesis 

(formulated as a model with known or 

unknown parameters) in light of new 

observations. The updated probability is 

the probability of the hypothesis being 

true given or conditional on the observed 

data. For example, Nugent (pp. 20–21), 

uses Bayesian analysis to provide managers 

with a posterior probability that TB has 

Fig.  A schematic of model types, where model attributes are listed in the left hand column, and arrows 

defi ne the scale of the attribute and the model type in relation to that scale.
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been eradicated from wildlife vectors in 

an area, given negative surveillance and 

testing results. Using a similar approach, 

Parkes (p. 17) estimates the probability 

that the eradication of a target pest has 

occurred given no further animals are 

found. A key diff erence between Bayesian 

inference and classical (frequentist) 

inference is that Bayesian analysis assumes 

model parameters are random values 

whereas frequentist analysis assumes 

model parameters are fi xed, true quantities 

(Fig.). This means Bayesian analyses can 

accommodate uncertainty at all levels 

in the modelling process: in the model 

parameters, in the process being modelled, 

and in the observation of that process (e.g. 

Anderson (pp. 8–9) included observation 

error in his Bayesian analysis of pig home 

range use). This hierarchical approach is 

handy for ecological data, which often 

comprise piecemeal observations measured 

at diff erent scales and thus don’t conform 

to the assumptions of frequentist statistical 

models.

The above has been a brief overview of 

common modelling terminology but in 

reality there are as many diff erent model 

“types” as there are ecological questions. 

Mandy believes that there are models to fi t 

every situation and that good science and 

management demand their wider use.

This work is funded by the Foundation 

for Research, Science and Technology 

(Programme C09X0909: Invasive Mammal 

Impacts on Biodiversity).

Mandy Barron

barronm@landcareresearch.co.nz



Predicting where and when possum 
browse will kill trees

Possums have been implicated as major 

drivers of the loss of biodiversity in forests 

in New Zealand. Although possums favour 

non-foliar foods such as energy-rich fl owers 

and fruits (and such browsing may hinder 

long-term forest regeneration), foliage 

browsing is a signifi cant cause of dieback 

and mortality of native tree species.

Untangling quantitative, causative 

relationships between possum density, 

observable damage and tree mortality is 

diffi  cult, not least because such data are 

highly variable, both within and among 

forest sites. For example, while both 

Landcare Research and the Department 

of Conservation use the Foliar Browse 

Index (FBI) method to assess forest tree 

condition, it provides only snapshots of 

forest health. Pen Holland and colleagues 

have been using FBI data to formulate and 

parameterise a mathematical model of 

foliage growth, turnover and consumption, 

(Fig.) to answer two questions:

• How much of a tree’s foliage do possums 

have to eat in order to kill it?

• To what level does foliage consumption 

by possums have to be reduced in order 

to protect trees at a particular location 

from browse-induced mortality?

The model framework is based on 

interacting processes at diff erent spatial 

scales, from individual leaves to tree canopies, 

through to large areas of mixed forest.

Browse damage occurs when part of a leaf 

is eaten by a possum, and the FBI records 

the ratio of whole to partially browsed 

leaves in the tree canopy. For this reason, 

the model incorporates the within-

canopy foraging strategy of possums, 

such as browsing entire or partial leaves 

indiscriminately, or only browsing entire 

leaves, leaf tips or petioles, or new growth.

The timescale is also important. While 

trees may be able to regenerate after a 

one-off , severe, defoliation event (e.g. 

storm damage), continual and preferential 

browsing by possums can have a 

detrimental eff ect on foliage growth rates 

and lead to tree death. The model has been 

used to quantify how foliage growth rates 

of kāmahi change with browsing damage, 

and to estimate mean leaf life span from FBI 

data. This is a crucial part of the framework, 

since leaf turnover removes evidence of 

historical browse.

At the tree scale, light browsing does not 

generally make any diff erence to canopy 

health, but heavy browsing clearly does so. 

When browsing exceeds some threshold, 

the model shows that the tree is unable to 

regrow foliage fast enough to replace the 

leaves lost to both browse and leaf-fall, and 

total defoliation and death are inevitable. 

This proves that browsing alone can kill 

kāmahi, with an average sized tree dying 

if more than about 6,000 leaves or about 

10% of its foliage (<1 kg dry weight, or 

<2% of a typical possum’s annual foliage 

consumption) are eaten annually. Once a 

tree has passed the browsing threshold, 

possum control may not be enough to 

reverse canopy decline.

Possums choose to eat foliage from 

an individual tree depending on the 

palatability, nutritional quality and toxin 

levels of its foliage, and the variety of other 

foods available. Hence, to predict how 

possum damage drives tree mortality at a 

site means large-scale foraging strategies 

must be incorporated into the model. FBI 

data alone cannot tell managers why spatial 

browsing patterns are so heterogeneous, 

but such data can be used to estimate 

foraging behaviours. For example, the 

proportion of kāmahi at a site showing no 

sign of browse can be used to estimate the 

degree of preference for individual kāmahi 

trees of similar size. If more large trees 

than small show heavy browse damage 

(as is normally the case), there must be an 

underlying preference for feeding in the 

canopies of large trees, over and above 

the proportion of food such trees provide 

within an area.

To predict tree mortality at a new location, 

minimal new data are required, including 

diameter at breast height, foliage cover, and 

browsing damage indices from a sample 

of trees, and a single estimate of possum 

density. Pen and her colleagues used such 

data from two North Island locations to 

test the model’s predictions, and found 

that their model reproduces annual kāmahi 

mortality patterns well. Future development 

of the model will broaden the scope to 

more native tree species, and incorporate 

drivers of possum population and foraging 

dynamics.

This work was funded by Landcare 

Research’s Capability Funding.

Pen Holland

hollandp@landcareresearch.co.nz

Fuchsia trees killed by possum browse at Haast, South Westland.
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Fig. The structure of the tree mortality model. Information 
about tree species is used to model individual tree 
health and survival, given a foliage consumption rate 
by possums (top). Forest sites are characterized by 
tree size, health and possum density, and foraging 
strategies used to model the distribution of foliage 
consumption at this larger spatial scale (middle). 
The result is a site-specifi c prediction of the annual 
probability of tree mortality. When parameterized 
for kāmahi trees at Rotorangi, in the North Island, the 
model predictions compared favourably to observed 
patterns of mortality over the last decade (graph, 
bottom).
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Pigs have been released on islands 

worldwide to provide food for castaways, 

hunters and as livestock. However, they are 

omnivores and consequently pose a serious 

threat to native fl ora and fauna. Pigs can 

aff ect the survival and recruitment of native 

plants through their consumption, rooting 

up and trampling. They also disperse 

exotic plant propagules and accelerate soil 

erosion and consequent sedimentation in 

waterways. Successful eradication of pigs 

from islands therefore has potential for high 

biodiversity gains, but the extreme terrain 

and/or thick vegetation often found there 

makes hunting and trapping physically 

diffi  cult and expensive. There is therefore a 

growing need to understand the ecology of 

pigs in diff erent island habitats to increase 

the effi  ciency of eradication eff orts.

The Auckland Islands in New Zealand’s 

subantarctic zone is a good example of a 

very isolated archipelago with terrain likely 

to make any eradication of pigs diffi  cult. 

The main Island only is inhabited by pigs, 

and it is large (46,000 ha), mountainous 

and located 310 km south of Stewart 

Island (Fig. 1). The climate is characterised 

by persistent westerly winds and annual 

precipitation of approximately 1780 mm. 

Pigs were introduced in 1807 and were 

widely distributed by 1880. Dietary studies 

have suggested they prefer living in the 

tussock vegetation occurring on higher 

land and potentially migrate to the coast in 

winter. Both of these behaviours may make 

eradication easier.

Dean Anderson used Department of 

Conservation location data from Argos 

telemetry collars deployed on 15 pigs on 

Auckland Island to address two objectives:

• To quantify home-range sizes across sex-

age classes, and examine how these vary 

with vegetation cover; and

• To develop a resource-selection model 

that describes how pigs select various 

attributes of the environment.

Dean’s analyses showed that home-range 

size varied from 1.37 – 32.8 km2 (mean = 

10.05 km2, SD = 9.0 km2). The mean range 

sizes for males and females were 10.93 km2 

and 8.89 km2 respectively, but the diff erence 

was not signifi cant. Home-range size 

increased with increasing tussock cover. 

While home-range centres are not an 

indicator of home-range use, they were all 

located in or next to tussock cover (Fig. 1), 

suggesting a preference for this habitat, 

perhaps due to ease of movement relative to 

that in scrub.

A hierarchical Bayesian analysis of resource-

selection showed that pigs generally do not 

migrate to the coast in winter as previously 

thought (although one pig did so in June; 

see Fig. 2). Results also demonstrated a 

strong attraction for tussock cover and 

for north-facing slopes, and repulsion 

from scrub vegetation. The pigs had the 

tendency to make direction reversals in 

1-day time intervals, which resulted in a 

criss-crossing pattern of home-range use, 

rather than directional persistence around 

range edges. The Bayesian approach also 

allowed Dean to account for the varying 

levels of telemetry error among the location 

data, and permitted the use of all the data 

and more accurate inference of the results.

It is clear from this analysis that eradication 

operations of pigs on Auckland Island need 

to put all the animals at risk by seeking 

them out, rather than waiting for them to 

come down to the coast. Because of access 

issues, this is a diffi  cult task, but one that 

can be made less arduous by focusing 

eff orts in tussock vegetation and to a lesser 

extent on north-facing slopes. If traps are 

used, they can be spaced further apart 

in areas with high tussock cover (where 

their ranges are greater) than in areas with 

low tussock cover. Hunters should use 

the knowledge that the diff erent ranging 

patterns in tussock and scrub cover will 

infl uence the density of their ‘sign’. Further, 

the tendency of pigs to make direction 

reversals with one-day time intervals rather 

Analysis of home-ranges of pigs
assists in their eradication

from Auckland Islands
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than roaming along home-range edges 

with directional persistence may be of 

assistance in planning for their eradication. 

However, Dean believes these patterns of 

movement and habitat use are likely to 

change as the population declines and 

as the pigs become wary of hunters and 

trapping devices. As the pigs adapt to the 

pressure of the eradication eff orts, control 

staff  will have to adapt to altered patterns of 

pig movements.

This work is funded by the Department of 

Conservation.

Dean Anderson

andersond@landcareresearch.co.nz

Pete McClelland and Liz Metsers, 

Department of Conservation

Fig. 1. The study location on Auckland Island. 
Tussock and scrub habitat are depicted as dark 
and light grey respectively. All other land covers 
are grouped together as white. Black dots show the 
home range centres of the radio-collared pigs.

Fig. 2. The movements of one pig showing 
clear selection for tussock vegetation 
(tussock = dark grey; scrub = light grey; and 
alpine = white). This animal unusually also 
demonstrated a movement toward the coast 
followed by moves inland.
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in Victoria
Distribution modelling for managing sambar deer

Sambar deer were released in the 1860s in 

Victoria, Australia, and have subsequently 

spread across much of the State. Such 

expansion is of concern because of the 

potentially negative impacts the deer may 

have on native biodiversity and agriculture. 

Cost-eff ective management of sambar 

deer, as for any exotic species, requires 

knowledge of their current and potential 

distributions (i.e. areas of suitable habitat 

both occupied and unoccupied). 

The time and cost to conduct 

comprehensive surveys of wildlife across 

large areas such as Victoria (237,629 km2), 

can be prohibitive. And even if it could be 

done, how would anyone know if an area 

was suitable habitat if a species had not yet 

had a chance to colonise there?

Fortunately, there is a method to predict 

future population distributions: predictive 
distribution modelling. The idea is based on 

the assumption that a species has its own 

environmental niche, i.e. it will live in areas 

that meet a certain range of environmental 

conditions related to biophysical variables 

such as temperature, rainfall, type of 

vegetation, and distance to water. 

The approach involves developing a 

statistical model that describes the 

relationship between site occupancy (the 

presence or absence of a species at a small 

number of sampled sites relative to the 

total possible number of sites) and the 

biophysical variables at those sites. If these 

so-called ‘predictor’ variables are available 

for all sites, then the statistical model can 

be used to predict the habitat suitability of 

sites that are not surveyed. 

Andrew Gormley, working with Dave 

Forsyth and others at the Arthur Rylah 

Institute, Department of Sustainability 

and Environment (DSE), in Victoria, used 

this approach to determine the current 

and potential distributions of sambar 

deer in the State. For the purpose of their 

fi eld sampling and modelling, Victoria 

was divided into a grid of cells of 2×2 km, 

resulting in 56,764 cells. Fieldwork in 80 cells 

detected sambar deer in half of them (Fig. 
1a). However, although sambar deer are 

clearly common and widespread in Victoria, 

they are typically nocturnal and live in 

dense forest, making them hard to detect. 

To minimise the chance of missing sambar 

deer during each survey, three diff erent 

detection methods were used in each cell: 

• Faecal pellet counts (x3) along randomly 

placed 150-m survey lines 

• Sign surveys (x1) involving searches for 

sambar, their wallows, tree-rubs and 

tracks, along a 400-m trail or watercourse

• Heat-in-motion remote cameras (x2) left 

out for 3 weeks at the start and end of 

the sign-survey trail 

Twelve biophysical variables were 

potentially useful predictors of sambar 

deer occupancy. The Victorian State 

Government’s Geospatial Database Library 

was used to calculate ‘spatial layers’ for 

each biophysical variable and hence the 

variable’s value at every cell across Victoria. 

Next, statistical modelling determined 

the relationship between sambar deer 

and the biophysical variables, and this 

relationship was ‘projected’ onto every cell 

to produce a map of habitat suitability for 

sambar deer in Victoria (Fig. 1b). Finally, the 

map was partitioned into areas of suitable 

and unsuitable habitat, with the suitable 

habitat further divided into occupied and 

unoccupied range (Fig. 2). The occupied 

range was estimated as the utilisation 

distribution calculated from all recorded 

A female sambar deer at a camera-trap during a presence/absence fi eld survey. 
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sightings of sambar deer that have been 

entered into DSE’s Atlas of Victorian 
Wildlife. The results indicate that sambar 

deer presently occupy about 74% of their 

potential range in Victoria.

The analysis identifi ed several discrete 

areas of suitable habitat that are currently 

unoccupied (Fig. 2). Establishing surveillance 

monitoring in such areas may enable new 

populations to be quickly detected and 

appropriate management actions to be 

implemented. 

Predictive distribution modelling is a tool 

that managers can use to estimate current 

and potential distributions of invasive 

species, and can be applied to any plant 

or animal taxon. It can also be used to 

better target control and/or containment 

actions in occupied range and establish 

surveillance monitoring to detect incursions 

into unoccupied range. It is inevitable that 

some areas of unsuitable habitat will be 

incorrectly deemed as suitable and vice 

versa. The method attempts to minimise 

these errors and at the same time provide 

a practical method for estimating habitat 

suitability at large spatial scales. 

This study was funded by the Department 

of Sustainability and Environment, 

Victoria (Land Management Branch), the 

Department of Primary Industries, Victoria 

(Invasive Plants and Animals Branch) and 

Parks Victoria.

Andrew Gormley

gormleya@landcareresearch.co.nz

Dave Forsyth, Michael Lindeman, David 

Ramsey, Michael Scroggie and Luke 

Woodford

Arthur Rylah Institute for Environmental 

Research, Australia

Peter Griffi  oen

Peter Griffi  oen Consulting, Australia

Fig. 1. Maps of Victoria (a) showing fi eld-site location, with sambar deer presence (blue) 
and absence (red) indicated, and (b) habitat suitability for sambar deer. 

Fig. 2. Sambar deer range in Victoria: areas deemed to be unsuitable sambar deer 
habitat are grey, unoccupied range is red, and occupied range is green with circles 
showing sambar deer locations recorded from the Atlas of Victorian Wildlife.

(a)

(b)
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Predicting the impacts of facial tumour disease on
populations of Tasmanian devils

Wildlife diseases can lead to signifi cant 

losses of individuals over short periods 

of time and may ultimately result in 

extinctions either directly or indirectly by 

making populations more vulnerable to 

other threats such as predation or habitat 

loss. Understanding the potential impacts 

of disease outbreaks is thus essential for 

eff ective conservation management. When 

knowledge about a disease is scarce (e.g. 

where it has newly emerged), mathematical 

modelling can be used to indicate what 

impacts could occur based on the 

information available.

Tasmanian devil populations are threatened 

by a fatal infectious disease known as 

devil facial tumour disease (DFTD). The 

disease causes malignant facial tumours, 

limiting an individual’s ability to feed, and 

typically results in death within 6 months of 

infection. Signs of DFTD were fi rst detected 

in north-eastern Tasmania in 1996 and the 

disease has since spread over most of the 

species’ range, leading to major population 

declines. This has raised questions about 

the potential long-term impact of DFTD on 

devil populations.

To gain an insight into what this impact is 

likely to be, and hence indicate the most 

appropriate strategies for managing the 

disease, Dan Tompkins and Amy Whitehead 

have been using an epidemiological 

mathematical model of disease dynamics 

to investigate whether or not (and, if so, 

how) the transmission of DFTD between 

devils is related to population density. This 

is one of the key questions to ask for any 

wildlife disease. Many diseases are ‘density 

dependent’; that is, transmission rates 

decrease as population size decreases. 

Where this is the case, diseases generally 

‘fade out’ as populations decline and 

hence are self-limiting. However, if disease 

transmission is independent of density, they 

can potentially have much greater impacts 

on host populations.

The model simulated a population of 

devils and contained information about 

population age and sex structure, in 

addition to individual infection status 

(Fig. 1). Such complexity is required to 

realistically model DFTD in devils as 

the disease is strongly believed to be 

transmitted via biting linked to breeding 

(i.e. male–male transmission associated with 

competition for mates and male–female 

transmission during mating).

To investigate whether DFTD transmission is 

density dependent or density independent, 

a range of diff erent mathematical functions 

for the transmission process known 

from other diseases were modelled to 

assess which function (or combination 

of functions) best simulated disease 

dynamics observed in the fi eld. The models 

also predicted the associated change in 

population size of devils over 50 years to 

assess the likelihood that DFTD would lead 

to their extinction.

Out of the transmission functions assessed, 

two provided the closest fi t to the best 

available fi eld data on disease prevalence 

(i.e. the proportion of infected individuals) 

from an infected population of devils in 

Freycinet National Park, Tasmania (Fig. 

2); namely ‘frequency dependence’ (a 

density-independent function commonly 

associated with sexually transmitted 

diseases in which transmission rate is 

related to the proportion of infected 

individuals) and ‘combined frequency and 

density dependence’ (background density-

dependent transmission occurring year 

round with an additional higher rate of 

frequency-dependent transmission during 

the breeding season).

Dan and Amy’s modelling exercise strongly 

indicates that at least some, if not all, 

transmission of DFTD is independent of 

density. As a consequence, the disease is 
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not likely to be self-limiting through fade-out as populations 

decline, but could potentially cause rapid population decline 

(and perhaps) extinction. The model predicts that populations 

are likely to fall below 10% of their original size within a decade 

of infection being detected (Fig. 2). This conclusion refl ects 

fi eld observations to date. Hence, if the goal is to conserve 

devils in the wild, management intervention that can limit 

the impact of the disease in the wild is needed immediately. 

Longer term options such as vaccination or breeding for 

resistance could take well over a decade to achieve – by which 

time, it would most likely be too late.

This work was funded by Landcare Research Capability  

Funding.

Amy Whitehead

whiteheada@landcareresearch.co.nz

Dan Tompkins

tompkinsd@landcareresearch.co.nz

Fig. 2. Predicted DFTD dynamics under (a) density-dependent and (b) frequency-dependent transmission (combined density and frequency dependence not 
shown). The left column shows estimated DFTD prevalence (solid line) plotted against observed prevalence (points), while the right column shows predicted 
population trends.
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Fig. 1. Model of DFTD infecting Tasmanian devils. Green and blue compartments denote male and female animals respectively. Thick black arrows 
indicate the fl ow of animals between model compartments, red arrows indicate production of off spring by breeding adults, and short blue arrows 
indicate losses due to mortality (both natural and disease induced).
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Possums are killed as pests in offi  cial control 

programmes and also harvested as a 

resource by commercial operators seeking 

their fur and skins.

Possums have been harvested for their fur 

in New Zealand since 1921. The industry 

peaked in 1981 when 3.4 million skins were 

exported. Since then, demand for fur-on 

skins has been weak, but has been replaced 

by an increasing demand for plucked fur 

that is woven with merino wool to produce 

high quality yarn (e.g. Merinomink™, 

Perino™). The demand for plucked fur has 

grown about 10% per annum over the last 7 

years (Fig. 1).

The use of plucked possum fur as a 

component in blended yarn is now well 

established with the New Zealand yarn 

industry estimated to be worth $50–70 

million per annum. To service the demand 

for fur, about 1.5 million possums are now 

harvested each year, with about 80% of 

the fi bre being processed into yarn for 

manufacturing into garments in New 

Zealand.

Because possums are controlled extensively 

in New Zealand for both the management 

of bovine TB and for protection of 

conservation values, the yarn-based 

industries are concerned about security 

Can the possum fur industry contribute to
possum control programmes?

of supply and the ‘waste’ of fur when 

possums are killed in control operations. 

Consequently, commercial fur hunters ask 

how can the fur industry and pest control 

agencies work together for their mutual 

benefi t?

To determine whether fur harvesting 

can provide a sustainable livelihood for 

trappers ‘competing’ for possums with the 

possum control industry, Bruce Warburton 

has developed a spreadsheet model that 

integrates the price paid for fur, and the 

catch rate most likely achieved by trapping, 

given the prevailing density of possums. 

The model assumed (1) a hunter’s income 

of $1,250 a week, (2) that hunters checked 

200 traps per day, (3) that $5 worth of 

fur was recovered on average from each 

possum, and (4) that the catch on trap lines 

declined each night at a given rate (derived 

from catch-rate data from lines trapped for 

up to 7 nights). The model also assumed a 

starting density of possums (indexed using 

a trap-catch rate), and was varied over the 

range found in the fi eld (e.g. 0–80%). For the 

example shown below, the model used a 

starting density (trap catch) of 50% (Fig. 2).

In this example, the catch on the fi rst night 

was 100 possums (i.e. 50% of 200 traps) and 

accumulated each night (yellow line) at 

a declining rate because of the decline in 

capture rate (blue line). By the sixth night 

of trapping, the catch had declined to 10% 

(blue line on graph).

The trapper can use one of two strategies: 

(1) try to maximise profi t (i.e. return on 

eff ort), or (2) try to maximise the number 

of possums harvested (and therefore 

reduce the population to as low a level 

as possible). If they choose option (1), the 

model suggests they should stop when the 

catch rate has fallen to 25%, i.e. at point (c) 

when the diff erence between the numbers 

Models wearing Merinomink™ garments made from a mix of possum fur and merino wool.

Sn
ow

y 
Pe

ak
 L

td



Vertebrate Pest Research 15

Fig. 1. Possum fur harvested from 2000 to 2007, with the number of possums harvested based on the 
weight of fur taken (assumed 20 possums equate with c. 1 kg of fur).
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Fig. 2. Relationship between cumulative catch per night, number of possums required for a sustainable 
industry, and resulting trap-catch index. At point (a), the number of possums caught equals the 
minimum number of possums required to generate an acceptable income, and trapping for more nights 
would result in the trapper making a loss. When the trapper gets to point (a) on night 6, the trap-catch 
index has been reduced to point (b), which is about 10%. The point where the diff erence between the 
cumulative catch and the number of possums required (i.e. the rate of return on eff ort expended) is 
maximised is also shown (c).
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caught and what they need to achieve 

their desired income is maximised. If the 

trapper chooses option (2) then they can 

continue to trap through to night 6 when 

their cumulative catch equals the possums 

required to match the income target set of 

$1,250 a week. If they trap beyond this point 

they will operate at a loss. At point (a), they 

would have reduced the catch level down 

to about 10% and be getting a very low rate 

of return on their eff ort expended.

So does such modelling help managers 

planning offi  cial control operations? If the 

example given above is applied uniformly 

across a block where offi  cial control is 

planned, there may be some conservation 

benefi ts to plant and animal species that 

are moderately susceptible to possum 

browse or predation, but no benefi ts to 

more vulnerable species. However, it is 

unlikely there will be any benefi ts for the 

managers of TB control operations because 

possum numbers need to be reduced to 

levels indicated by a trap-catch of about 2% 

to eliminate any transmission of the disease 

between them.

At present Bruce is working with the 

Hawke’s Bay Regional Council to try and 

fi nd eff ective ways to integrate harvesting 

for fur into offi  cial control programmes. 

He believes his model goes some way to 

providing a better understanding of what 

possum densities (as indexed by trap catch) 

trappers for fur can economically operate 

down to, and how the confl ict between 

possums as pests and possums as a 

resource can be resolved.

This work was funded by an Envirolink Grant 

(HBRC53)

Bruce Warburton

warburtonb@landcareresearch.co.nz
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Introduced rat species have signifi cant 

impacts on seabird populations around 

the world through their predation on 

eggs and chicks. This is particularly so for 

breeding colonies on islands. One example 

of such predation occurs on Ririwha, an 

island owned by Ngā Uri o Whakakii (a 

hapū of Ngāpuhi) off  Whangaroa Harbour, 

Northland, which has remnant populations 

of burrowing petrels and also kiore 

(Polynesian rat) and Norway (brown) rats, 

the former in large numbers. The hapū, via 

the Ririwha Restoration Trust, have asked 

Phil Lyver and Chris Jones to determine 

the eff ect of rats on egg survival and 

breeding success of oi (grey-faced petrel) 

populations and to develop population 

models to predict the recovery of oi in the 

absence of rats. This work is in line with Ngā 

Uri o Whakakii’s plan to eradicate rats from 

Ririwha to allow the restoration of its native 

plants and animals.

The island has, until recently, been used 

for farming and is still stocked with sheep, 

which are maintained to help manage the 

introduced grasses, kikuyu in particular, that 

cover much of the island. Small remnants 

of native vegetation persist in gullies and 

around the coastal margins.

Oi are of cultural signifi cance to northern 

iwi, and once formed the basis of 

widespread customary harvest. However, 

their present numbers make such harvest 

unsustainable. Restoration of the small 

remaining oi populations on Ririwha is likely 

to be achieved only by removing the rats. 

It is hoped that the knowledge gained by 

Chris and Phil from this work (and from the 

eventual rodent eradication programme) 

will complement the team’s other research 

on sustainable harvesting of oi on the 

Aldermen Islands and Moutohora (Whale 

Island), and will guide the management of 

the birds’ recovery on Ririwha.

The team is looking at how egg survival and 

breeding success of oi vary in both time and 

space relative to the presence of rats. Prior 

to the proposed island-wide eradication of 

rats, the researchers have set up trapping 

grids, including  120-m-wide buff er zones, 

over two remnant breeding colonies to 

remove all rats while the birds are laying 

and incubating. Breeding success of oi is 

being monitored using fi bre-optic cameras, 

or ‘burrowscopes’, which allow observers 

to detect breeding birds, eggs or chicks 

deep inside the birds’ burrows. Results from 

the trapped areas will be compared with 

those obtained from similar grids in other 

colonies where the rats are monitored but 

not trapped.

As well as being used to compare breeding 

success of oi in the presence and absence 

of rats in the same season, the untrapped 

areas will eventually be used to compare 

the breeding success of oi over time as 

the rat eradication programme (under the 

guidance of John Parkes) gets underway. 

The breeding performance of oi will be 

monitored for 3 years and the resulting 

data will be used in simple stage-based 

population growth models to predict the 

trajectory of the birds’ recovery.

The project is in its early stages, but the 

team has already carried out rat trapping 

at the two removal sites (c. 2 ha) for the 6 

weeks of the oi breeding season when eggs 

and young chicks are most vulnerable to 

predation by rats. In just over 12,000 trap-

nights, over 400 kiore were removed from 

the two grids. Both the researchers and the 

hapū are keen to fi nd out how much this 

has contributed to the breeding success of 

oi in those small colonies as a forerunner 

to future island-wide eradication of rats, 

and both groups have high hopes for the 

ongoing restoration of Ririwha and its 

native biodiversity.

The Trust’s long-term vision is one of 

co-existence of people and native species 

to maintain historical and traditional 

practices in and around the island. Mike 

Sheehan of the Trust believes that such 

restorative initiatives provide a continuity of 

past and future practices that will, in turn, 

allow for new and developing technologies 

to stimulate growth and new opportunities.

This work is funded by the Foundation 

for Research, Science and Technology 

(Programme C09X0908: Te Hiringa Tangata- 

Bicultural Restoration of Coastal Forests 

using Sea Birds).

Chris Jones

jonesc@landcareresearch.co.nz

Phil Lyver 

Mike Sheehan 

Ririwha Restoration Trust

Restoring Ririwha  
(Stephenson Island)

Kev Drew using a burrowscope on Ririwha Island to check oi (grey-faced petrel) burrows for chicks.
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Eradication is usually the preferred option to 

manage pests because it (a) eliminates any future 

impacts, (b) may allow the damage from past 

impacts to ameliorate, and (c) does so at a one-off  

cost. However, judging whether eradication is 

possible is often not straightforward. Managers can 

use two approaches to see whether eradication 

is feasible. Firstly, they can look at precedents: 

who has succeeded before against this pest 

under similar circumstances? Secondly, they can 

analyse whether the necessary conditions for 

success can be met: can all the pests be put at 

risk and killed faster than they can replace their 

losses, is immigration unlikely or manageable, 

do the benefi ts outweigh the costs, and is 

eradication socially acceptable?

Having decided that eradication is feasible, 

managers have two strategies they can use, 

depending on the pest species of concern 

and the control tools available. For some pests, 

eradication can be achieved by a single, one-hit 

control event that kills the entire population, e.g. 

aerial baiting of rodents on islands. For others, 

eradication is achieved by successive control 

events that eventually reduce the population 

to zero, e.g. ground-based hunting of ungulates 

or trapping of stoats. These two strategies force 

managers into two quite distinct decision points 

that determine diff erent planning and research 

needs – when to start and when to stop.

For the fi rst strategy, everything must go right 

‘on the day’, so meticulous planning and review 

before the operation are best practice. That 

is, start rules are the key. The operation itself 

provides no (or at best limited) information on 

success or failure. For managers to measure this 

they have to check for survivors, and if any exist 

they have to be located and removed. However, 

there are problems with doing this immediately 

after an aerial operation – absence of evidence 

does not mean absence of survivors and the 

only way to increase certainty of success is to 

diligently look for survivors throughout the 

entire operational area. A second problem is that 

the detection of a survivor at one point does 

not provide information on their presence or 

absence at other places, and unless the response 

to a point location is to repeat the broad-scale 

control everywhere as a precaution, the only 

other way to check for ‘success’ is again to look 

everywhere. Both these options are costly so the 

normal process is to wait and see if pests have 

survived by allowing time for their population 

to recover and become obvious – and then 

repeat the eradication attempt. The problem 

with the absence of information provided by 

the control method per se is that the causes of 

failure are often diffi  cult to prove and managers 

have to rely on weight-of-evidence diagnoses.

Recently, several pest eradication projects 

based on aerial poisoning have either not 

met their start rules, or have failed despite 

concerns about aspects of their start rules. For 

example, the rodent and rabbit eradication 

on Australia’s subantarctic Macquarie Island 

planned for 2010 was halted (and hopefully just 

postponed until 2011) as bad weather precluded 

the helicopters used to sow the poison bait 

from fl ying during the window of time when 

non-target birds at risk from the baiting were 

absent. In contrast, the kiore eradication on 

Hawaii’s Lehua Island had reached such a stage 

of planning (and regulatory commitment) that 

it was attempted and failed despite less than 

ideal conditions (unexpected rainfall causing 

a fl ush of vegetation and abundant food for 

the rats) and constraints (restrictions on baiting 

along the coast).

The second strategy, successive removal events, 

provides managers with information from the 

control events. Control eff ort, numbers of animals 

removed, their location, sex, age, and reproductive 

condition can all be measured as the campaign 

proceeds. Such information allows managers 

to adapt their plans and improve their chances 

of eventual operational success. The problem 

is thus not the start rules but when to stop 

and declare success.

In recent years Dave Ramsey, John Parkes and 

their co-workers have been using Bayesian 

modelling approaches (which allow for the 

generation of statistical likelihoods based on 

partial information) with data collected during 

such projects to (a) measure the probability 

that the lack of further animals killed or caught 

by the control tools (or detected in monitoring 

devices) equals no animals present, and (b) to 

prescribe how much more monitoring is required 

and where it should be applied, to increase 

this probability to some level of comfort to 

decision-makers so they can stop all control.

For example, Island Conservation, a California-

based NGO, has been attempting to eradicate 

feral cats from San Nicolas Island in California. 

Most cats were trapped over a year and this, 

along with searches of cat sign and the use 

of fi xed cameras, provided data to calculate 

whether eradication had been achieved once no 

further cats were detected. Analysis of the data 

towards the end of the campaign suggested 

there was a 95% chance that between one and 

four cats remained, and as it transpired two 

further cats were detected and removed. The 

model that predicted this two-cat outcome 

had a 25% chance of being correct.  The model 

allowed managers to design their stop-rule 

monitoring to limit the chance of falsely declaring 

eradication and/or to optimise the trade-off s 

between the costs of extra monitoring and the 

costs of falsely declaring success (see Ramsey 

et al. in the publication list in this issue).

A research area of growing interest is whether 

the approaches used on San Nicolas Island can 

be applied in a cost eff ective way to locate and 

kill survivors immediately after aerial eradication 

attempts.

 

This work was funded by The Nature Conservancy 

and Island Conservation (USA).

John Parkes 

parkesj@landcareresearch.co.nz

Start and stop rules in  PEST ERADICATION
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Eradication of disease from an area is a 

discrete event; it either occurs or does 

not (e.g. ‘heads’ in a coin toss). If we fi nd 

a diseased animal, we know for certain 

that the eradication attempt failed. 

Unfortunately, if we do not fi nd a diseased 

animal, we cannot be certain that the 

eradication attempt actually succeeded. 

The best we can do is to predict the 

probability of eradication success. Such 

modelling assumes that the more we 

search for the disease without fi nding it, 

the more confi dent we can be that we have 

succeeded.

There are now fewer than 90 cattle and deer 

herds infected with bovine tuberculosis 

(TB) in New Zealand, a drop of over 95% 

since 1994. Predicting the probability of TB 

eradication from particular areas enables 

limited resources to be allocated to areas 

where there is insuffi  cient surveillance data 

and where success is less likely. Modelling 

TB freedom is complicated because of 

inherent sources of uncertainty, and the fact 

that the disease can be harboured by and 

transmitted between livestock (cattle and 

deer) and wildlife (possums). 

Here, Dean Anderson and his colleagues 

describe recent research aimed at 

modelling the combined probabilities of 

freedom of TB freedom for both livestock 

and wildlife, and how they account for 

uncertainty in the predictions generated.

Management decisions on whether to 

declare eradication success are based 

on predicted probabilities of freedom 

exceeding a specifi ed threshold (e.g. > 

0.95 probability of freedom). Standard 

probability calculations are used to 

combine the probabilities of freedom 

in livestock ‘AND’ wildlife, which results 

in a combined probability that is lower 

than the probabilities for the individual 

populations (Fig. 1). Consequently, predicted 

probabilities for both populations have to 

be well above the target threshold for the 

combined overall probability of freedom 

to surpass the threshold. Figure 1 illustrates 

how the individual population probabilities 

exceeded the threshold in 2008, but 

the combined probability did not reach 

the mark until 2009 (due to intensifi ed 

surveillance).

The lines in Fig. 1 suggest that the team is 

certain about the predicted probabilities 

of freedom in livestock, wildlife and for the 

whole area. In reality, such probabilities are 

mean predictions from a model, and as such 

only represent a ‘best guess’. Consequently, 

sources of uncertainty are incorporated 

in the model. For example, fi eld tests to 

detect TB in livestock are imperfect (e.g. the 

standard caudal-fold skin test used on cattle 

only has an 82% (95% CI = 74–90%) chance 

of detecting TB in an infected animal). 

Similar uncertainty exists in the tests used 

on wildlife, and also in the probability of 

disease transmission and capture. The level 

of uncertainty is indicated in the confi dence 

intervals of the predicted probabilities of TB 

freedom.

Incorporating uncertainty in modelling the 
probability of freedom of bovine tuberculosis 

Kararehee KKinnoo / / FeFebrbruauaryry 22010111181

inherent sources of uncertainty, and the fact 

that the disease can be harboured by and 

transmitted between livestock (cattle and 

deer) and wildlife (possums). 
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Fig. 1. Predicted mean probability of freedom from TB over time for livestock (thin 
line), wildlife (dashed line), and for both combined for the area (bold line). Only when 
the probability of freedom is suffi  ciently high (>95%) for both populations will the 
combined probability exceed the threshold (i.e. year = 2009).

Graphically representing the combined probability as a distribution (or histogram) 

allows Dean and his colleagues to assess this uncertainty. For example, two 

diff erent surveillance scenarios could result in equal and satisfactory mean 

predicted probabilities of freedom (0.95), but very diff erent levels of uncertainty 

(as measured by the 5th quantile; Fig. 2). Where there is high uncertainty, there 

is a high risk of being wrong in declaring the area disease-free. In contrast, 

where there is low uncertainty, or high confi dence, the risk of being wrong in 

declaring eradication is relatively low. If managers are unsatisfi ed with the level of 

uncertainty associated with the predictions, additional surveillance will increase 

the accuracy and certainty in the model predictions.

Deciding how much extra disease management and/or surveillance is needed is 

always going to be diffi  cult. The modelling described here can be used within a 

resource-allocation framework (see Nugent, pp. 20–21) to compute the amount 

of additional surveillance and/or wildlife control necessary to minimise the ‘net 

expected cost’ of being wrong (i.e. the joint cost in dollars of surveillance and 

renewed eradication operations). Minimising the cost of being wrong must 

include sources of uncertainty so that decisions are based on reliable model 

predictions.

Dean Anderson

andersond@landcareresearch.co.nz

Graham Nugent and Mandy Barron
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Fig. 2. Two diff erent surveillance scenarios with 
predicted probability of TB freedom expressed as a 
distributions with means = 0.95 (red lines). 
(a) Scenario with high uncertainty in predictions as 
indicated by the low peak near the mean and low 
5th quantile (0.62; blue line). (b) Scenario with low 
uncertainty in predictions as indicated by the high 
peak near the mean and relatively high 5th quantile 
(0.86; blue line).

Probability of freedom

Probability of freedom

D
en

si
ty

D
en

si
ty

0.6 0.7 0.8 0.9 1.0

0.6 0.7 0.8 0.9 1.0

0
5

10
15

0
5

10
15

(a)

(b)

2006 2007 2008 2009 2010

0.
40

.5
0.

60
.7

0.
80

.9
1.

0



Kararehe Kino / February 201120

The current national bovine tuberculosis 

(TB) control strategy focuses on reducing 

and maintaining low possum densities 

in areas with infected livestock, and the 

testing and movement control of cattle. 

This strategy has successfully reduced 

the number of infected cattle herds from 

over 1,400 in 1994 to fewer than 90 now. 

The Animal Health Board now proposes 

to eradicate TB from all wild animal 

populations over 2.5 million hectares of 

New Zealand by 2026. This ambitious but 

achievable goal will depend on a ‘proof of 

freedom’ framework designed by Landcare 

Research. This framework provides an 

objective assessment of the probability that 

TB has been eliminated from an area (P
NoTB

), 

based on recent control of wildlife vectors 

of the disease and lack of detection of TB in 

livestock, possums, or other wildlife sentinel 

species.

Under this framework, an area will be 

declared TB-vector free when P
NoTB

 

is greater than some predetermined 

risk-management threshold (e.g. 95% 

probability that TB has been eliminated) 

that represents a low risk of operational 

failure (i.e. a 5% chance that TB is still 

present in wildlife vectors). When P
NoTB 

is still 

below the threshold, undertaking further 

possum control will increase the probability 

of achieving eradication. However, TB may 

have already been eradicated, and all that 

is needed to prove this is additional wild 

animal surveys. Obviously a key need is 

to know which option to choose for any 

specifi ed area. For example, should funding 

be used to kill more possums or to survey 

sentinel species such as wild pigs and deer 

for TB? Both strategies will help increase 

P
NoTB

, but which would be most cost 

effi  cient?

To explore these complex resource-

allocation questions, Graham Nugent, 

Pen Holland and colleagues are using the 

TB-freedom problem outlined above as the 

initial, and arguably one of the simplest, of 

several case studies (including island and 

disease eradication problems) to construct 

whole-system models to simulate all the key 

components of the Resource Allocation 

Framework (RAF) outlined in Fig.

Data from the Blythe Valley (North 

Canterbury) is used here to illustrate how 

such a RAF will help TB managers. TB 

emerged in cattle herds in the Blythe Valley 

in the 1990s, and possum control began 

in 2000. By 2004, annual ground control 

of possums had reduced the number of 

infected herds to low levels but TB was still 

present in cattle. Intensive annual possum 

trapping continued until 2008 when just 

16 possums were caught from 6105 trap 

nights. Simulating this possum control 

history in a model of TB epidemiology in 

possums predicted a 99% likelihood that TB 

had been eliminated from possums as early 

as 2005.

Despite that prediction, TB was still present 

in cattle in 2005, making it prudent to 

assume there was still a 50:50 chance that 

infection was present in wildlife populations 

of either possums or ferrets. However, using 

data from trapping and from necropsies 

of possums and ferrets undertaken over 

the next three years, the Proof of Freedom 

Framework predicted a >95% likelihood 

that TB had been eradicated by 2008. One 

of the most important factors contributing 

to this high probability of eradication 

was the large amount of data from traps 

that caught no possums. If there is a zero 

catch rate at a trap site, there is a near-zero 

chance TB could persist within a 200–300 m 

radius of that site, because there are too few 

possums to maintain the disease.

Since 2007, no infected cattle have been 

found in the Blythe Valley. With hindsight, 

the last few cases of TB in cattle in 

2005–2007 were probably animals that 

didn’t react to the TB test or were due 

to within-herd infection. If so, TB was 

probably eradicated from possums by 2005 

(as predicted by the Possum-TB model). 

What is the most cost effective path to TB freedom? 
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Fig. Resource (Funding) Allocation Framework (RAF) for rapid confi rmation of TB freedom. The funding 
available can be allocated solely to killing possums or to some mix of possum surveillance (necropsy for 
TB), sentinel surveillance, and cattle surveillance (testing). These other activities provide information as 
to where an area sits along the TB-extinction curve. The RAF will be used to simulate and predict how 
funding should be allocated between activities that will most cost eff ectively eliminate TB and ‘prove’ that 
it has been eradicated from wild animals.

However, a further $256,000 was spent 

on pest control, arguably for no benefi t 

if TB had already been eliminated from 

wild animals. The obvious diffi  culty is 

that managers had no way of confi rming 

that TB had been eliminated, so their 

decision to continue precautionary 

control was sensible. Nevertheless, 

some of the expenditure could have 

been saved if there had been an earlier 

shift away from simply killing possums 

toward both killing possums and using 

the wildlife surveillance data to ‘prove’ TB 

was absent.

The aim is therefore to develop whole-

system models that will enable TB 

managers to allocate funding among 

control and surveillance strategies, 

in order to maximise the rate of TB 

eradication and to provide timely 

confi rmation of success. Graham and his 

colleagues consider that a whole-system 

model for TB will improve the allocation 

of control and surveillance resources and 

thereby improve eradication effi  ciency.

This work is funded by the Foundation 

for Research, Science and Technology 

(Programme C09X1008: TB and Multi-

Pest Suppression Systems).

Graham Nugent

nugentg@landcarresearch.co.nz

Pen Holland, Dean Anderson, Mandy 

Barron, Andrew  Gormley and Chris Jones 
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The National Pest Management Strategy 

for bovine TB in New Zealand proposes 

three options for managing wildlife 

vectors: containment of the pests, rollback 

of the disease, and disease eradication. 

Under all three scenarios, accurate, real-

time and future predictions of possum 

abundance will be critical in order to make 

management decisions. Also possums 

have signifi cant environmental impacts as 

they defoliate trees and prey on the eggs 

and chicks of native birds. Conservation 

eff orts could be coordinated better if the 

Department of Conservation, regional 

councils and private groups have a more 

complete, up-to-date picture of when 

and where possums are being controlled. 

James Shepherd and his colleagues have 

developed a prototype individual-based 

model predicting the abundance of 

possums nationally: the National Possum 

Model. The model uses open-source GIS 

software and integrates existing land 

cover maps, jurisdictional boundaries, and 

control area boundaries. The model will 

be delivered and updated over the Web. 

However, users will need to input data on 

possum control in order to receive useful 

current and future population predictions.

Based on estimates of possum density and 

home-range size, the model describes the 

behaviour of individual possums located 

explicitly in a map of their habitat; hence 

it is referred to as an ‘individual-based 

model’. Each individual has an Easting 

and Northing coordinate representing 

the notional centre of its home range. 

Each home range is assumed to be fi xed, 

unless the possum ‘decides’ to disperse. 

Key events in an individual’s lifetime 

comprise birth, death, and dispersal, and 

these are simulated as stochastic (random), 

competing Poisson processes, i.e. there is 

uncertainty in the timing of each event. 

It is assumed that births and deaths are 

aff ected by the local density of possums. 

In the model, the population density of 

possums is represented by a map that is 

the sum of the intensity of home-range use 

The National Possum Model – involving more than 
30 million individuals

possums / ha

NO CONTROL - 48 MILLION

possums / ha

AHB & DOC Control - 30 MILLION

Fig. 2. Modelled density of possums following control programmes by the Animal Health Board and the 
Department of Conservation in 2008 and 2009.

Fig. 1. Modelled equilibrium density of possums without control.



Vertebrate Pest Research 23

by all individuals. Possum carrying capacity 

(i.e. maximum density) varies across the 

landscape and is predicted from detailed 

habitat maps derived from satellite imagery 

(Fig. 1). Births in the model occur as a single 

‘pulse’ each year.

Due to the random nature of events in a 

possum’s life, a single run of the model 

provides only one of many possible 

‘realisations’ of changes in the possum 

population. Predictions require many 

individual model runs with diff erent random 

starting values to build up a distribution of 

results from which the mean and spread of 

behaviour is drawn. This type of modelling 

is often termed Monte Carlo simulation and 

is computationally intensive. Typically, a 

prediction for the outcome of a possum 

control programme, for example, is created 

from 500 model ‘runs’. While this amount 

of processing does seem prohibitive, each 

run is independent and can therefore be 

carried out simultaneously on a cluster 

of computers set up to work as a single 

coherent unit. Eventually James and his 

team intend to move their modelling to 

a nationally based, high performance 

computing network. The equivalent of 

a true super computer will enable the 

complete suite of Monte Carlo simulations 

to be undertaken in the same time it takes 

for one run of the model on a desktop 

computer.

The National Possum Model will provide 

detailed and realistic forecasts of possum 

abundance, now (Fig. 2) and at regular time 

intervals into the future. In other words, it 

will be a dynamic, continuously updated, 

national map of possums. To achieve this 

will require user input of the extent and 

eff ectiveness of recent control programmes 

to ‘reset’ possum numbers locally and to 

update the national prediction (Fig. 3). 

An important part of the process will be 

managers providing feedback to modellers 

when predictions diff er from reality, so 

access to pre-control monitoring data 

will be invaluable. It is expected that 

the eff ectiveness of the model will be 

improved by many areas of Landcare 

Research’s current research: satellite image 

processing and subsequent classifi cation 

of land vegetation cover, understanding 

the relationship between vegetation cover 

and possum density, and improving model 

parameters for home range distribution 

and dispersal of possums through analysis 

of possum movement behaviour using GPS 

collars.

This work is funded by the Foundation 

for Research, Science and Technology 

(Programme C09X0909: Invasive Mammal 

Impacts on Biodiversity).

James Shepherd

shepherdj@landcareresearch.co.nz

Mandy Barron and Roger Pech

NPM – Web demonstration

Fig. 3. Example of a web page for submitting the results of a recent possum control programme.



 Some relevant vertebrate-pest-related publications

© Landcare Research New Zealand Ltd 2011.  This information may be copied and distributed to others without limitation, provided Landcare Research New Zealand 
Limited is acknowledged as the source of the information.  Under no circumstances may a charge be made for this information without the express permission 
of Landcare Research New Zealand Limited.

Arthur AD, Krebs CJ, Pech RP, Farroway LN, Singleton GR 2009. The transmission rate of MCMV in house mice in pens: implications for 
virally vectored immunocontraception. Wildlife Research 36: 386–393.

Bellingham PJ, Wiser SK, Wright AE, Cameron EK, Forester LJ 2010. Disperser communities and legacies of goat grazing determine 
forest succession on the remote Three Kings Islands, New Zealand. Biological Conservation 143: 926–938. 

Cui X, Duckworth JA, Lubitz P, Molinia FC, Haller C, Lubitz W, Cowan PE 2010. Humoral immune responses in brushtail possums 
(Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein. Vaccine 28: 4268–4274. 

Cui X, Duckworth JA, Molinia FC, Cowan PE 2010. Identifi cation and evaluation of an infertility-associated ZP3 epitope from the 
marsupial brushtail possum (Trichosurus vulpecula). Vaccine 28: 1499–1505. 

Duckworth J 2010. New technologies for stoat control. Protect. Autumn: 17–18.

Forsyth DM, Wilmshurst JM, Allen RB, Coomes DA 2010. Impacts of introduced deer and extinct moa on New Zealand ecosystems. 
New Zealand Journal of Ecology 34: 48–65. 

Forsyth DM, Allen RB, Marburg AE, MacKenzie DI, Douglas MJW 2010. Population dynamics and resource use of red deer after 
release from harvesting in New Zealand. New Zealand Journal of Ecology 34: 277–287.

Gormley AM, Forsyth DM, Griffi  oen P, Lindeman M, Ramsey DSL, Scroggie MP, Woodford L 2011.  Using presence-only and 
presence–absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology 48: 
25–34.

Innes J 2010. Forest fragments : objectives of restoration and management. Open Space 78: 22–23. 

Innes J, Kelly D, Overton JM, Gillies C 2010. Predation and other factors currently limiting New Zealand forest birds. New Zealand 
Journal of Ecology 34: 86–114.

Innes J, King CM, Bridgman L, Fitzgerald N, Arnold G, Cox N 2010. Eff ect of grazing on ship rat density in forest fragments of lowland 
Waikato, New Zealand. New Zealand Journal of Ecology 34: 227–232.

Jones C 2009. Performance measurement for pest management. Biosecurity 94: 14–15.

O’Reilly-Wapstra J, Cowan P 2010. Native plant/herbivore interactions as determinants of the ecological and evolutionary eff ects of 
invasive mammalian herbivores: the case of the common brushtail possum. Biological Invasions 12: 373–387.

Parkes J 2010. Invasive species: a battle on many fronts. EcoAmericas 12: 6–9. 

Parkes JP, Nugent G 2009. Management of terrestrial vertebrate pests. In: Clout M, Williams P ed. Invasive species management : a 
handbook of principles and techniques. Oxford, Oxford University Press. Pp. 174–184. 

Pech R, Byrom AE, Anderson D, Thomson C, Coleman M 2010. The eff ect of poisoned and notional vaccinated buff ers on possum 
(Trichosurus vulpecula) movements : minimising the risk of bovine tuberculosis spread from forest to farmland. Wildlife Research 37: 
283–292. 

Prebble M, Wilmshurst JM 2009. Detecting the initial impact of humans and introduced species on island environments in remote 
Oceania using palaeoecology. Biological Invasions 11: 1529–1556. 

Ramsey DSL, Eff ord MG 2010. Management of bovine tuberculosis in brushtail possums in New Zealand: predictions from a spatially 
explicit, individual-based model. Journal of Applied Ecology 47: 911–919.

Ramsey DSL, Parkes JP, Will D, Hanson CC, Campbell KJ In press. Quantifying the success of feral cat eradication, San Nicolas Island, 
California. New Zealand Journal of Ecology 35(2) http://www.newzealand ecology.org.nz/nzje.

Ruscoe W, Cave S, Sweetapple P, Pech R, Barron M, Yockney I, Perry M, Carran R, Brausch C 2010. Species interactions and 
consequences of pest control in forest ecosystems. Protect. Autumn: 13–14. 

Tompkins DM, Ramsey DSL, Cross ML, Aldwell FE, de Lisle GW, Buddle BM 2009. Oral vaccination reduces the incidence of 
tuberculosis in free-living brushtail possums. Proceedings of the Royal Society B - Biological Sciences 276: 2987–2995.


