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NEW ZEALAND’S FRESHWATER FISH
 The freshwater fi sh fauna

At present, 50 genetically distinct, extant fi sh species are 
recognised in freshwaters in New Zealand with another three 
or four species yet to be formally named (Allibone et al. 2010) 
(Table 1). However, the actual species number is hard to defi ne 
because eight are classifi ed as ‘freshwater indeterminate’: they 
are essentially marine species but move far into fresh waters 
for long periods. Only one native fi sh, the endemic grayling 
(Prototroctes oxyrhynchus), is known to have become extinct 
since the fi rst human settlement of New Zealand c. 700 years ago, 
although many other species have become locally extinct over 
much of their pre-European range. New Zealand’s freshwater fi sh 
fauna is unique, with 92% of the named species found nowhere 
else in the world. The fauna comprises nine families: Geotriidae, 
Anguillidae, Retropinnidae, Prototroctidae, Galaxiidae, 
Cheimarrhichthyidae, Eleotridae, Mugilidae, and Pleuronectidae. 
Galaxiidae make up more than half the species. In addition to 
these native fi sh species, a further 21 exotic species have been 
introduced to New Zealand (Table 2).

The total number of described native species has increased in 
the last few decades because new species have been discovered 
and new genetic techniques have allowed some morphologically 
cryptic species to be discriminated (Waters and Wallis 2000; 
Wallis et al. 2009). Nevertheless, the number of freshwater fi sh 
species in New Zealand is low compared with other regions glob-
ally (Leveque et al. 2008); for example, it is much lower than 
the number of species found in a single South American river, 
although higher than the total fauna of the United Kingdom.

Diadromy
One feature of the New Zealand freshwater fi sh fauna is the 

large proportion of diadromous species: namely, fi sh that under-
take two migratory movements between the ocean and fresh 
water in their life cycles. Diadromous fi sh employ three very 
distinctly different strategies: anadromy, catadromy, and amphi-
dromy (Table 3). Anadromous fi sh spend their adult life in the 
sea, move to fresh water to breed, then die; catadromy is essen-
tially the opposite, with fi sh spending most of their adult life in 
fresh water before a fi nal migration to the ocean to breed and 
die; and amphidromy is an intermediate strategy in which adults 
live in fresh water, usually breed yearly, and the juveniles spend 
time in the ocean before returning to fresh water (McDowall 
1988). A few decades ago diadromy was thought to be obliga-
tory in most diadromous species, but we now know that in some 
species diadromy seems to be facultative, as not all individuals 
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migrate. In the currently recognised extant taxa, diadromy is 
thought to be obligatory in 13 species and facultative in 6, and at 
least one diadromous species is present in each of the nine fami-
lies in the New Zealand fauna (Ling 2010). Seven diadromous 
species include landlocked populations, usually, but not always, 
are formed when a lake outlet is blocked (Closs et al. 2003).

Implications of diadromy for biodiversity
Diadromous individuals belong to national populations with 

large overlapping ranges covering most of New Zealand or wider; 
some are found on offshore islands or even further in Australia 
and South America (e.g. lamprey and inanga). In contrast, non-
diadromous species have much more restricted ranges, especially 
in the south-eastern South Island where they are thought to 
have evolved as a result of glacial or geomorphological vicari-
ance during the Pleistocene (Wallis et al. 2009). Most of these 
species are small-bodied galaxiids that are now restricted to 
small tributary streams where they can fi nd refuge from down-
stream predatory exotic salmonids (McIntosh 2000; McDowall 
2003, 2006). However, the non-diadromous species of bullies 
(Eleotridae) have broader ranges: the upland bully is found over 
most of the South Island as well as the lower half of the North 
Island, and the Crans bully is found over most of the North Island 
but not the South Island.  One exception is the non-diadromous 
Tarndale Bully found in a very restricted area of a few tarns in the 
northern South Island

New Zealand’s native fi sh are not only unique taxonomi-
cally (92% endemic), but are also unusual in that they are mostly 
small, benthic, riverine, largely nocturnal, diadromous, and 
cryptic (McDowall 1990). Most are found almost exclusively in 
riverine habitats, with the few exceptions being species found in 
both rivers and lakes. These exceptions are the two eel species, 
common bully, koura, two inanga species, and giant kōkopu; 
none dwell exclusively in lakes. Most New Zealand fi sh species 
are benthic (resting on the bottom) rather than pelagic (mostly 
swimming in the water column). Even more unusually, some 
species spend a large proportion of time within the substrate, 
living below the stream bed in the spaces between rocks and boul-
ders (McEwan and Joy 2011, in press).

International trends in freshwater fi sh biodiversity 
Freshwater fi sh are declining throughout the world (Dudgeon 

et al. 2006). In the early 1990s more than 20% of the world’s 
10 000 recorded freshwater fi sh species had become extinct, 
threatened, or endangered (Moyle and Leidy 1992). By 2009 the 
IUCN Red List of Threatened Animals listed 37% of freshwater 
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Family Formal name Common name Threat 
classifi cation (2010)

Endemic/
Indigenous

Diadromous Landlocked 
populations

Usual 
habitat

Anguillidae Anguilla australis 
schmidtii

Shortfi n eel Not threatened Indigenous Cat Never Stream/
wetland

Anguilla dieffenbachii Longfi n eel Declining Endemic Cat Never Stream/lake 

Anguilla reinhardtii Australian longfi n 
eel

Coloniser Indigenous Cat Never Stream

Eleotridae Gobiomorphus alpinus Tarndale bully Naturally 
Uncommon

Endemic No N/A Lake

Gobiomorphus basalis Crans bully Not threatened Endemic No N/A Stream

Gobiomorphus breviceps Upland bully Not threatened Endemic No N/A Stream

Gobiomorphus cotidianus Common bully Not threatened Endemic Amp Often Stream/lake 

Gobiomorphus gobioides Giant bully Not threatened Endemic Amp Never Stream

Gobiomorphus hubbsi Bluegill bully Declining Endemic Amp Never Stream

Gobiomorphus huttoni Redfi n bully Declining Endemic Amp Never Stream

Galaxiidae Galaxias aff. 
paucispondylus 
“Manuherikia”

Alpine galaxias 
(Manuherikia)

Nationally 
Endangered

Endemic No Never Stream

Galaxias aff. 
paucispondylus 
“Southland”

Alpine galaxias 
(Southland)

Not threatened Endemic No Never Stream

Galaxias “Northern sp.” Possible new 
non-diadromous 
galaxias

Naturally 
Uncommon

Endemic No Never Stream

Galaxias “Southern sp.” Possible new 
non-diadromous 
galaxias

Not threatened Endemic No Never Stream

Galaxias “Teviot” Possible new 
non-diadromous 
galaxias

Nationally critical Endemic No Never Stream

Galaxias aff. cobitinis 
“Waitaki”

Waitaki Lowland 
longjaw galaxias 

Nationally critical Endemic No Never Stream

Galaxias aff. 
gollumoides”Nevis”

Smeagol galaxias Nationally 
vulnerable

Endemic No Never Stream

Galaxias aff. prognathus 
(Waitaki)

Upland longjaw 
galaxias (Waitaki)

Nationally 
vulnerable

Endemic No Never Stream

Galaxias anomalus Roundhead 
galaxias

Nationally 
vulnerable

Endemic No N/A Stream

Galaxias argenteus Giant kokopu Declining Endemic Amp Occasional Stream/lake 

Galaxias brevipinnis Koaro Declining Indigenous Amp Often Stream/lake 

Galaxias cobitinis Kakanui Lowland 
longjaw galaxias 

Nationally critical Endemic No N/A Stream

Galaxias depressiceps Taieri Flathead 
galaxias

Not threatened Endemic No N/A Stream

Galaxias divergens Dwarf galaxias Declining Endemic No N/A Stream

Galaxias eldoni Eldon’s galaxias Nationally 
vulnerable

Endemic No N/A Stream

Galaxias fasciatus Banded kokopu Not threatened Endemic Amp Occasional Stream/lake 

Galaxias gollumoides Gollum galaxias Declining Endemic No N/A Stream

Galaxias gracilis Dwarf inanga Naturally uncommon Endemic No N/A Lake

Galaxias macronasus Bignose galaxias Nationally 
vulnerable

Endemic No N/A Stream

Galaxias maculatus Inanga Declining Indigenous Cat Rarely Stream/lake 

Galaxias paucispondylus Alpine galaxias 
(Canterbury)

Not threatened Endemic No N/A Stream

Galaxias postvectis Shortjaw kokopu Declining Endemic No Occasional Stream

TABLE 1 Native freshwater fi shes in New Zealand, including migratory status and threat classifi cation. Cat = catadromy; Amp = amphidromy (Allibone et al. 
2010; McDowall 2010).
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Galaxias prognathus Upland longjaw 
galaxias 
(Canterbury)

Nationally 
vulnerable

Endemic No N/A Stream

Galaxias pullus Dusky galaxias Nationally 
endangered

Endemic No N/A Stream

Galaxias sp. Dune lakes 
galaxias

Naturally uncommon Endemic No N/A Lake

Galaxias sp. D./Clutha 
fl at-head

Clutha fl at-head 
galaxias

Nationally 
vulnerable

Endemic No N/A Stream

Galaxias vulgaris Canterbury 
galaxias

Not threatened Endemic No N/A Stream

Geotriidae Geotria australis Lamprey Declining Indigenous Yes Never Stream

Neochanna Neochanna apoda Brown mudfi sh Declining Endemic No N/A Wetland

Neochanna burrowsius Canterbury 
mudfi sh

Nationally 
endangered

Endemic No N/A Wetland

Neochanna diversus Black mudfi sh Relictual Endemic No N/A Wetland

Neochanna heleios Northland mudfi sh Nationally 
vulnerable

Endemic No N/A Wetland

Neochanna rekohua Chatham Island 
mudfi sh

Naturally uncommon Endemic No N/A Lake

Pinguipedidae Cheimarrichthys fosteri Torrentfi sh Declining Endemic Yes Never Stream

Pleuronectidae Rhombosolea retiaria Black fl ounder Not threatened Endemic Yes Never Estuaries 
and lowland 
lakes

Retropinidae Prototroctes oxyrhynchus Grayling Extinct Indigenous Yes Never Stream

Retropinna retropinna Common smelt Not threatened Endemic Yes Often Stream/lake 

Stokellia anisodon Stokells smelt Naturally uncommon Endemic Yes Never Stream

Mugilidae Aldrichetta forsteri Yelloweyed 
mullet

Not threatened Indigenous No N/A Lowland 
streams

 Mugil cephalus Grey mullet Not threatened Indigenous No N/A Lowland 
streams

Tripterygiidae Grahamina nigripenne Estuarine triplefi n Not threatened Endemic No N/A Estuaries

Gobiidae Gobiopterus semivestitus Glass goby Coloniser Indigenous No N/A Lowland 
streams

Microdesmidae Parioglossus marginalis Goby Coloniser Indigenous No N/A Lowland 
streams

Common name Formal name

Atlantic salmon Salmo salar

Bridled goby Arenigobius bifrenatus

Brook char Salvelinus fontinalus

Brown trout Salmo trutta

Catfi sh Ameiurus nebulosus

Caudo Phallocerus caudimaculatus

Chinook salmon Oncorhynchus tshawytscha

Gambusia Gambusia affi nis

Goldfi sh Carassius auratus

Guppy Poecilia reticulata

Grass carp Ctenophoryngodon idella

Koi carp Cyprinus carpio

Lake char/mackinaw Salvelinus namaycush

Orfe Leuciscus idus

Perch Perca fl uviatilis

Rainbow trout Oncorhynchus mykiss

Rudd Scardinius erythrophthalmus

Sailfi n molly Poecilia latipinna

Sockeye salmon Oncorhynchus nerka

Swordtail Xiphophorus helleri

Tench Tinca tinca

TABLE 2 Exotic fi sh species established in New Zealand 

fi sh species as extinct or threatened. While alarming, these fi gures 
undoubtedly underestimate the true extent of decline because 
available data on freshwater biodiversity are meagre, and when 
biodiversity is declining the data inevitably lag behind actual 
range restrictions and extinctions. Furthermore, extinction debt 
causes an additional lag. Extinction debt describes the situation 
where species, particularly the long-lived ones, survive initial 
environmental impacts but lack of recruitment means extinction 
of remaining populations is inevitable (Jackson and Sax 2010).

Even disregarding the likely underestimation of declines, 
where national data are available the trend is ominous. In South 
Africa, 63% of freshwater fi sh were listed as threatened or endan-
gered; in Europe, 42%; in Iran, 22% (Moyle and Leidy 1992). In 
the United States, 37% of freshwater fi sh species are threatened or 
have become extinct (Master et al. 1998) and 3.7% of freshwater 
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species are projected to become extinct in North America each 
decade. Sadly, this rate of decline is nearly fi ve times higher than 
that of terrestrial animals (Ricciardi and Rasmussen 1999).

New Zealand trends in freshwater fi sh biodiversity 
New Zealand’s record of threatened species is one of 

the world’s worst: 68% of all native fi sh species are listed as 
threatened. Nationally, fi sh abundance and diversity have been 
declining for at least the last century but this has accelerated over 

the last 40 years (Figure 1). While only one species, the gray-
ling (see above), has become extinct, the range and abundance 
of most species has declined. This can be seen from the increase 
in the number of species listed as threatened over the last 20 
years, with the proviso that the criteria for threat rankings change 
over time and data for the listings inevitably lag behind actual 
declines. In 1992 the New Zealand Department of Conservation 
(DOC) recorded 10 species as threatened; by 2002 that number 
had risen to 16 species (4 were classifi ed as acutely threatened, 

Common name Scientifi c name Migratory strategy Prevalence (%) Mann–Kendall score Adjusted P-value

Lamprey Geotria australis Anadromous 1.73 −54 0.00

Black fl ounder Rhombosolea retiaria Amphidromous 0.83 −54 0.00

Torrentfi sh Cheimarrichthys fosteri Amphidromous 6.68 −50 0.00

Brown trout Salmo trutta Anadromous+ 21.99 −48 0.00

Common bully Gobiomorphus cotidianus Amphidromous+ 15.71 −48 0.00

Bluegill bully Gobiomorphus hubbsi Amphidromous 3.18 −48 0.00

Koaro Galaxias brevipinnis Amphidromous+ 8.06 −45 0.03

Common smelt Retropinna retropinna Anadromous+ 3.87 −42 0.03

Longfi n eel Anguilla dieffenbachii Catadromous 35.92 −39 0.05

Yelloweye mullet Aldrichetta forsteri Marine 0.85 −35 0.10

Giant kokopu Galaxias argenteus Amphidromous+ 3.16 −32 0.13

Redfi n bully Gobiomorphus huttoni Amphidromous 13.16 −30 0.16

Shortfi n eel Anguilla australis Catadromous 18.02 −25 0.21

Catfi sh Ameiurus nebulosus Non-migratory 0.75 −25 0.21

Rainbow trout Oncorhynchus mykiss Anadromous+ 5.95 −20 0.34

Dwarf galaxias Galaxias cobitinis Non-migratory 1.77 −20 0.34

Shortjaw kokopu Galaxias postvectis Amphidromous+ 2.14 −17 0.43

Canterbury galaxias Galaxias vulgaris Non-migratory 2.17 −12 0.62

Giant bully Gobiomorphus gobioides Amphidromous 1.57 −3 0.94

Goldfi sh Carassius auratus Non-migratory 2.1 −2 0.95

Inanga Galaxias maculatus Catadromous+ 10.88 4 0.92

Perch Perca fl uviatilis Non-migratory 1.29 8 0.76

Upland bully Gobiomorphus breviceps Non-migratory 10.91 10 0.69

Banded kokopu Galaxias fasciatus Amphidromous+ 11.58 26 0.23

Alpine galaxias Galaxias paucispondylus Non-migratory 1.53 26 0.23

Gambusia Gambusia affi nis Non-migratory 2.64 33 0.12

Crans bully Gobiomorphus basalis Non-migratory 3.89 - -

Rudd Scardinius erythrophthalmus Non-migratory 0.86 - -

Flathead galaxias Galaxias divergens Non-migratory 0.74 - -

Gollum galaxias Galaxias gollumoides Non-migratory 0.60 - -

Koi carp Cyprinus carpio Non-migratory 0.45 - -

Tench Tinca tinca Non-migratory 0.38 - -

Upland longjaw galaxias Galaxias prognathus Non-migratory 0.34 - -

Grey mullet Mugil cephalus Marine 0.24 - -

Grass carp Ctenopharyngodon idella Non-migratory 0.19 - -

Australian longfi n eel Anguilla reinhardtii Catadromous 0.07 - -

Tarndale bully Gobiomorphus alpinus Non-migratory 0.02 - -

Lowland longjaw galaxias Galaxias depressiceps Non-migratory 0.01 - -

TABLE 3 Freshwater fi sh species, their migratory strategy and prevalence in the New Zealand Freshwater Fish Database (fl owing waters), and Mann–Kendall 
trend test score. Species not found in all time classes and thus not included in temporal analyses have no Mann–Kendall statistic (bold denotes introduced species; 
+ denotes facultative migratory status).
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12 as chronically threatened, 4 as at risk, and 5 as data defi -
cient) (Hitchmough 2002). Three years later, in 2005, 24 species 
were listed as threatened (6 were listed as acutely threatened, 14 
as chronically threatened, 4 as at risk, and 5 as data defi cient) 
(Hitchmough et al. 2007). In 2007 a new threat classifi cation 
scheme was established (Townsend et al. 2008) using a reduced 
set of categories but retaining the key threat descriptors from 
previous classifi cations. Under this new system 68% of all extant 
native taxa and 76% of all non-diadromous taxa are considered 

threatened or at risk (1 species is listed as extinct, 1 as nationally 
critical, 2 as nationally endangered, 3 as nationally vulnerable, 1 
as in serious decline and 13 as in gradual decline, 2 as sparse, 4 
as range restricted, and 3 as data defi cient) (Allibone et al. 2010).

To assess and visualise trends in the status of New Zealand 
freshwater fi sh species over the last 40 years, we analysed fi sh 
distribution data from the New Zealand Freshwater Fish Database 
(NZFFDB). This database is maintained by New Zealand’s 
National Institute of Water and Atmospheric Research (NIWA) 
(McDowall and Richardson 1983; McDowall 1991); it contains 
more than 30 000 records of fi sh distribution, beginning in 1901, 
and is continuously updated. We analysed more than 22 000 
records of presence and absence of 38 species found in fl owing 
waters for the period January 1970 to December 2009. Individual 
species trends were analysed by comparing the proportions of 
sites containing each species over time. To compare changes in 
fi sh communities rather than just individual species we used an 
index of biotic integrity (IBI) adapted for New Zealand (Joy and 
Death 2004). The IBI is a robust and internationally used measure 

of the state of freshwater fi sh assemblages; it is used to assess 
the health of freshwater ecosystems, with high IBI values indi-
cating healthier systems than those with low IBI values. The IBI 
has been applied to a large database of freshwater fi sh distribu-
tion, collected throughout New Zealand over the last 40 years, to 
summarise temporal and land-use trends in freshwater health for 
the Ministry for the Environment (Joy 2009).

Freshwater fi sh biodiversity land-cover relationships
The IBI revealed clear relationships between fi sh assem-

blages in catchments under different land-cover or land-use types 
(Figure 2). The average fi sh IBI score was signifi cantly higher for 
the least-modifi ed indigenous forest and scrub sites than for the 
other land-cover classes, and the score for tussock was signifi -
cantly lower than for all other land-cover classes. Pasture sites 
had the next lowest scores but did not differ signifi cantly from 
urban, exotic and non-vegetated (bare land) sites.

Freshwater fi sh community trends
Trend analysis of the IBI scores clearly shows the decline 

in fi sh communities at all sites over the last four decades (Table 
4). To assess which of the land-cover classes contributed to this 
decline the different classes were analysed separately. IBI scores 
for indigenous forest sites increased signifi cantly for both years 
and decades, but decreased signifi cantly in pasture sites. Sites 
covered in scrub did not change over decades but declined 
between years. IBI scores in urban sites declined over the four 

All landcover classes

Decade

1970s 1980s 1990s 2000s

IB
I s

co
re

26

28

30

32

34

1142 4598 7415 9390

FIGURE 1 Average decadal IBI (Index of Biotic Integrity; Joy and Death 
2004) score for all sites (number of sites inside bars, whiskers = standard 
error). The higher the score, the healthier the ecosystem.

FIGURE 2 Average IBI (Index of Biotic Integrity; Joy and Death 2004) score 
for all sites grouped by River Environment Classifi cation (REC) land-cover 
class (ANOVA F7, 22538 = 247; P < 0.0001) (whiskers = standard error).

TABLE 4. Results of regression analyses for all sites and land cover classes using IBI scores for years and decades. Trend is signifi cant if P-value is less than 
0.05 (ns = not signifi cant)

REC land-use class Direction of change Number of sites All years Decades

F-value P-value F-value P-value

All sites Negative 22545 191.2 0.0001 223.7 0.0001

Pasture Negative 9931 92.0 0.0001 118.4 0.0001

Tussock Negative 2805 21.1 0.0001 38.83 0.0001

Indigenous Positive 5529 41.5 0.0001 24.7 0.0001

Urban Negative 1157 29.6 0.0001 19.9 0.001

Scrub Negative/ns 1193 3.9 0.047 1.21 0.27

Exotic ns 1318 2.4 0.13 0.09 0.77
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 2001

Nationally 
critical

Sparse Range 
restricted

Data 
defi cient

Total

Mollusca 14 4 18

Polychaeta 1 1 2

Nematoda 1 1

Ephemeroptera 3 6 9

Trichoptera 4 2 19 10 35

Notostraca 1 1

Amphipoda 1 1

Isopoda 1 1 2

4 6 38 21 69

2005

Nationally 
endangered

Nationally 
critical

Nationally 
vulnerable

Gradual 
decline

Sparse Range 
restricted

Data 
defi cient

Total

Platyhelminthes 2 2

Mollusca 1 1 59 3 64

Polychaeta 1 1 2

Nematoda 1 1

Ephemeroptera 1 4 4 9

Plecoptera 1 1

Coleoptera 2 2

Diptera 1 1 2

Trichoptera 2 8 1 3 18 9 41

Notostraca 1 1

Amphipoda 1 1

Isopoda 1 1 8 10

Decapoda 2 1 3

2 11 1 3 11 85 26 139

2010

Nationally 
endangered

Nationally 
critical

Nationally 
vulnerable

Declining Naturally 
uncommon

Data 
defi cient

Total

Platyhelminthes 1 1 2

Mollusca 1 14 1 2 25 23 66

Polychaeta 1 1 2

Ephemeroptera 1 1 3 31 36

Plecoptera 21 10 15 46

Zygoptera (Damselfl y) 1 1

Anisoptera (Dragonfl y) 1 1

Coleoptera 1 2 3 6

Diptera 1 2 3

Trichoptera 4 14 15 37 22 92

Notostraca 1 1

Conchostraca 1 1

Cladocera 1 1

Amphipoda 2 10 10 22

Isopoda 1 3 7 11

Decapoda 2 1 1 4

6 58 18 6 97 110 295

TABLE 5 Freshwater invertebrates recognised with a conservation threat status by the Department of Conservation in 2001 (McGuinness, 2001), 2005 (C Mc-
Guinness, pers. comm.) and current review (N Grainger, pers. comm.)
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decades. The exotic forest sites dipped in the 1990s but there was 
no signifi cant linear trend for both years and decades, whereas 
scores for tussock sites declined for both years and decades.

Freshwater fi sh species trends
Twenty-six fi sh species had suffi cient data over the four 

decades to be analysed for trends in the proportion of sites they 
occupied. Twenty (77%) had negative coeffi cients, meaning the 
number of sites at which they were found had decreased (Table 
3). After correcting for false discovery (FDR) (Benjamini and 
Hochberg 1995), nine (35%) of the 26 species had signifi cant 
trends and all were declines. Of the nine, eight were native, six 
endemic, and one non-native (brown trout). All nine are migra-
tory: fi ve are amphidromous (black fl ounder, torrentfi sh, common 
bully, bluegill bully, and koaro), two are anadromous (brown trout 
and common smelt), and one is catadromous (longfi n eel). Trends 
for each species were also measured in the two major land-cover 
classes; namely, native vegetation (indigenous forest and scrub) 
and pasture. Coeffi cients for the trend tests were plotted for these 
two land-use types to show trends for individual species with land 
use (Figure 3). The plot of Mann–Kendall proportional site occu-
pancy scores reveals that most species are declining in pasture 
and native forest.

This decline of freshwater biodiversity in New Zealand 
echoes global declines in biodiversity. This is not surprising given 
the drivers of decline in New Zealand and their impacts on fresh-
water biodiversity are similar to those occurring globally. These 
pressures include eutrophication, habitat loss and population 
isolation caused by the damming of rivers, habitat destruction, 

species invasion, overharvesting, and climate change (Allan and 
Flecker 1995). While this list of pressures is not comprehensive, 
it does include the major impacts; however, ascertaining how 
they interact, particularly the question of whether they are addi-
tive or multiplicative, is diffi cult (Ormerod et al. 2010).

Furthermore, impacts are often not direct. Thus, when 
nutrients in rivers increase, fi sh at fi rst are not affected directly 
(although at high levels these nutrients may be toxic), but algal 

growth can lead to extreme fl uctuations in oxygen availability. 
For example, oxygen saturation varies hugely in the Manawatu 
River below an intensively farmed catchment with an urban 
wastewater discharge. At this point in the river (Hopelands Road) 
oxygen saturation levels in summer vary from less than 40% in 
the early morning to more than 140% in the late afternoon of the 
same day (Clapcott and Young 2009). These extremes (both low 
and high) are potentially lethal, or at least harmful, for fi sh, but 
because guidelines and measurements are based on sampling 
that fails to record much of this variation, the detrimental conse-
quences are generally not apparent to resource managers.

Freshwater fi sh biodiversity threats
In New Zealand the health of freshwater ecosystems has 

declined substantially in recent years, with almost all water quality 
parameters measured via the national water quality monitoring 
network declining signifi cantly over the last two decades (NIWA 
2010). A study of more than 300 lowland waterways showed that 
80% of the sites in pasture catchments exceeded guideline levels 
for phosphorus and nitrogen (Larned et al. 2004), and 44% of 
monitored lakes in New Zealand are now classed as polluted with 
excess nutrients and sediment (Verburg et al. 2010).

The relationship between land cover – a surrogate for land 
use – and fi sh communities reveals the likely causes of the 
declines (see Table 4).  In general, deterioration in the health of 
fresh waters is related to agricultural impacts: excess sediment, 
phosphorus and nitrogen, as well as faecal pathogens (NIWA 
2010). The major driver of this deterioration is the expansion and 
intensifi cation of agriculture, particularly dairy farming (Wright 

2007). The decline in fi sh biodi-
versity is also related to the loss 
of habitat, a result of barriers to 
migration such as hydroelec-
tric dams and weirs and the 
draining of more than 90% of 
wetlands, mainly for agricul-
ture (Joy 2012).

One of the dominant natural 
patterns of the distribution of 
diadromous species within 
New Zealand is the way species 
richness and abundance are 
greatest near the coast in unim-
pacted waterways but decrease 
inland (Joy et al. 2000; Joy 
and Death 2001). This arises 
from the movement of diad-
romous species between these 
two biomes, and has major 
implications for fi sh distribu-
tion and biodiversity. Although 
freshwater health progressively 
deteriorates downstream, so 
the lower reaches are generally 

more degraded, this is where biodiversity potential is highest; 
conversely, the healthiest waterways lie in the upper reaches of 
rivers where diversity is naturally lowest. Because diadromous 
fi sh comprise a large part of freshwater fi sh biodiversity, changes 
in land use, chemical barriers, or physical barriers like dams 
will affect these fi sh in particular, and therefore the patterns of 
diversity and abundance. In the geological past, having part of 
the population out at sea at any one time was a good bet-hedging 

FIGURE 3 Mann–Kendall trend test scores for trends in proportional site occupancy over the years 1970–2010. Scores 
for sites in pastoral catchments plotted against scores for sites in native forest (Indigenous forest and Scrub REC classes) 
catchments.
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strategy, but recent changes wrought on rivers in New Zealand 
mean this may no longer be true.

Another major impact is accelerated sediment deposition 
caused by forest clearance and poor management of hill country 
land. Suspended sediment receives most attention but a major and 
probably more important issue for native fi sh is deposited sedi-
ment. Most New Zealand fi sh species are benthic and some spend 
a considerable proportion of their time in the substrate below the 
stream bed (McEwan and Joy 2011, in press); this makes them 
susceptible to sediment build-up because deposited sediment 
fi lls the interstitial spaces in which they live, severely reducing 
the amount of available habitat. Many New Zealand streams are 
affected by deposition of fi ne sediment, reducing the number of 
individuals that can occupy any reach of a waterway.

None of the threatened native fi sh species are legally 
protected; indeed, fi ve are harvested commercially and recre-
ationally. The Freshwater Fisheries Act 1983 formally protects 
the extinct grayling (last seen in the 1930s) and some introduced 
fi sh, mainly trout and salmon, but native fi sh are only protected if 
they are not used for ‘human consumption or scientifi c purposes’ 
– which means no protection. Thus, four of the fi ve species that 
make up the whitebait catch (juveniles of the migratory galaxiids; 
a popular recreational and commercial seasonal harvest in 
New Zealand) are listed as threatened.

Other impacts on freshwater fi sh biodiversity include compe-
tition from and predation by exotic fi sh. The New Zealand 
freshwater fi sh fauna evolved without large pelagic species like 
salmonids, and this has potentially increased the likelihood of 
negative interactions with these introduced species (McDowall 
2006). On the other hand, the economic and sport values of trout 
mean that without them fresh waters would potentially have less 
protection and be in a worse state (Joy and Atkinson 2012).

The future for freshwater fi sh biodiversity
The confl icting needs of agricultural intensifi cation, biodiver-

sity conservation, sport fi sheries management, and urban spread 
have created many pressures on water resources. These show 
no sign of abating – in fact, all are increasing. Despite the many 
measured impacts on fresh water from intensifi cation of farming, 
the government is backing a movement for further intensifi ca-
tion, mainly of dairy farming, through irrigation in drier areas. 
Consequently, impacts on freshwater biodiversity will accel-
erate. Irrigation has already increased; for example, from 1999 
to 2006 water allocation grew by 50%, mostly for irrigation, and 
this is likely to increase substantially. In short, the combination 
of climate change, agricultural intensifi cation, and further urban 
spread has very serious consequences for native fi sh diversity in 
New Zealand (Ling 2010).

NEW ZEALAND’S FRESHWATER INVERTEBRATE FAUNA
Invertebrates occupy a pivotal role in food webs in running 

water, by linking fi sh and periphyton as food and consumers 
respectively. Consequently, they perform an important ecosystem 
service in rivers and streams by processing organic matter and 
regulating the fl ow of energy. As fl ying adults, invertebrates also 
form an important dietary component for many terrestrial food 
webs, e.g. birds, spiders, and bats (O’Donnell 2004; Polis et al. 
2004; Burdon and Harding 2008). Some also provide food for 
humans (e.g. koura (crayfi sh) and kākahi (mussel)).

Invertebrates have also become particularly important in the 
bioassessment of fresh waters in New Zealand through the use of 
indices such as the Macroinvertebrate Community Index (MCI) 

(Boothroyd and Stark 2000) and reference condition modelling 
(Joy and Death 2003). The taxonomy of many of the groups, 
particularly the insects, has been well researched since the 1800s 
(see references in Winterbourn 2000b, 2004), but studies focused 
on conservation of aquatic invertebrates have been much less 
common (Collier 1993; Collier et al. 2000). On the other hand, 
New Zealand’s stream invertebrate biodiversity has been the 
subject of numerous excellent publications, prompted largely by 
the scientifi c interest of this biodiversity and its role in water body 
management (e.g. chapters in Collier and Winterbourn 2000; 
Winterbourn 2004; Winterbourn et al. 2006; Chapman et al. 
2011). This section only briefl y reiterates the main points about 
the general characteristics of the invertebrate fauna, and instead 
focuses primarily on the environmental drivers of biodiversity 
and how this diversity is faring in the anthropocene.

What is unique about New Zealand’s freshwater invertebrate 
species?

The New Zealand invertebrate fauna is characterised by a 
high degree of endemicity at species and genus levels, and by a 
relatively low number of introduced species (Boothroyd 2000; 
Winterbourn 2004). Many Northern Hemisphere families are 
absent and some are only represented by a single species. In 
general, New Zealand stream insects differ from those in northern 
climes in having fl exible, poorly synchronised life-histories and 
extended periods of fl ight and egg-hatching (Scarsbrook 2000). 
Furthermore, many are generalist feeders; in particular, the 
guild of specialised leaf-shredding species is meagre compared 
to similar Northern Hemisphere streams (Winterbourn 2000a). 
These characteristics refl ect New Zealand’s climate and topog-
raphy, with high rainfall and short, steep streams resulting in 
frequent fl oods that regularly remove invertebrates and their food 
(Winterbourn 1997). Although the total invertebrate diversity of 
New Zealand is lower than that of continental regions, the diver-
sity of individual New Zealand streams is similar to that in North 
America, Europe, and Asia, but lower than that in South America, 
Australia and Africa (Thompson and Townsend 2000).

International trends in freshwater invertebrate biodiversity
As outlined for fi sh, threats to aquatic invertebrates globally 

appear to be signifi cantly greater than those for their terrestrial 
counterparts (Dudgeon et al. 2006; Dudgeon 2010; Strayer and 
Dudgeon 2010; Vorosmarty et al. 2010). In more developed 
regions of North America and Europe it is not unusual to fi nd 
more than a third of freshwater species extinct or imperilled, 
and globally perhaps 10 000 to 20 000 species are now extinct 
(Strayer and Dudgeon 2010). Furthermore, the decline in more 
sedentary invertebrate groups may be as much as twice that for 
freshwater fi sh, birds, and mammals (Strayer and Dudgeon 2010). 
Conservation of freshwater invertebrates also suffers more than 
that of their larger aquatic vertebrate counterparts from a lack of 
information and taxonomic resolution (Strayer 2006), with many 
assessments of invertebrate conservation status being based on 
only one or two groups, e.g. Odonata or Decapoda. Global threats 
have apparently not been assessed for any freshwater invertebrate 
group.

This rate of decline is so dramatic and well advanced that 
action is urgent. Accordingly, Strayer and Dudgeon (2010) 
recently appealed to freshwater ecologists to focus more on 
species conservation in their studies of riverine communities 
and to coordinate better with research in conservation biology. 
They also argued that the literature on freshwater conservation 
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is sparse, out of proportion to the number of species in peril, and 
underrepresented in textbooks on conservation biology. However, 
these shortcomings may in part be a result of aquatic biologists 
focusing their research and activity more strongly on habitat 
restoration and preservation than on conservation of individual 
species (e.g. Lake et al. 2007; Bunn et al. 2010; Bernhardt and 
Palmer 2011). In Europe a consortium of scientists is currently 
compiling available information on the global freshwater fauna 
under a European Union funded project BioFresh (http://www.
freshwaterbiodiversity.eu/).

Conservation status of New Zealand freshwater invertebrates
In contrast to freshwater fi sh, for which there is a national 

database, there is no consistently used national repository of 
information on aquatic invertebrates, particularly those of conser-
vation interest. Regional councils, NIWA, and universities have 
databases of information on lake and/or riverine freshwater 
invertebrates, collected mainly for environmental assessment, but 
these collections often focus on calculating biological indices like 
the MCI, and lack the degree of taxonomic resolution (even if 
it were possible with the juvenile life stages usually collected) 
necessary to identify invertebrates of conservation concern. 
Furthermore, although DOC is currently re-evaluating the threat 
status of freshwater invertebrates (R. Miller pers. comm.), there 
is no widely available repository of the current status information 
except for Trichoptera (caddisfl ies), for which a national database 
is accessible through the internet (http://nzcaddis.massey.ac.nz/). 
New Zealand is a signatory to the 1992 and 2012 Conventions 
on Biological Diversity and has had a biodiversity strategy in 
place since 2000. Nevertheless, the invertebrate freshwater fauna 
of New Zealand seems largely ignored from a conservation 
perspective.

Trends in New Zealand freshwater invertebrate biodiversity 
As highlighted above, knowledge of New Zealand’s fresh-

water invertebrate biodiversity is patchy, often anecdotal, and 
diffi cult to fi nd. Consequently, it is diffi cult to know how that 
biodiversity is faring in the anthropocene. While New Zealand’s 
extensive monitoring network for assessing water quality in 
rivers does include sampling of invertebrate communities, the 
taxonomic resolution is not adequate for identifying taxa of 
conservation interest (Scarsbrook et al. 2000; Scarsbrook 2002; 
Larned et al. 2004). Thus, applications for resource consents 
require environmental effects to be assessed, but even when these 
assessments specifi cally consider freshwater invertebrate biodi-
versity, they are based on collections of larvae and are therefore 
unlikely to allow taxa of conservation concern to be identifi ed. 
For example, the application process for a proposed hydroelec-
tric development in the South Island included extensive in-stream 
sampling that revealed no taxa of conservation interest, but two 
trapping events of adult aquatic invertebrates yielded a handful 
of taxa new to science, and thus clearly of conservation interest.

Although there is a dearth of specifi c information on the 
biodiversity trends of New Zealand’s aquatic invertebrates, 
considerable circumstantial evidence suggests biodiversity is 
not faring well. As noted earlier, many New Zealand fi sh taxa 
are declining, and because both fi sh and invertebrates live in 
the same habitats, the invertebrates are likely to be negatively 
affected by many of the same drivers of decline. Many rare and 
range-restricted invertebrates live in highly specialised habi-
tats including seeps, springs and braided rivers, all of which are 
increasingly threatened by agricultural intensifi cation (Scarsbrook 

et al. 2005; Collier and Smith 2006; Gray et al. 2006; Barquin and 
Scarsbrook 2008). Diversity in small fi rst to second-order streams 
is often high, both locally and regionally, and again these habitats 
are being degraded by human activity (Clarke et al. 2008, 2010; 
Finn et al. 2011).

Changes in the conservation status of New Zealand fresh-
water invertebrates reinforce these apparent trends; thus, the 
number of taxa that might be considered at risk to some degree 
has increased from 69 in 2002, to 139 in 2005, to 295 in 2010 
(Table 1). Although some of this rise refl ects increasing knowl-
edge of taxonomy and distribution, the number of nationally 
critical taxa has increased from 4 in 2002, to 11 in 2005, to 58 
in 2010. Even within this assessment there are some clear gaps, 
with the crayfi sh Paranephrops listed, but its commensal fl at-
worm, the platyhelminth Temnocephala novaezealandiae, not 
listed. Finally, given the gaps in taxonomic knowledge of many 
of the lesser known groups, the backlog (with many taxonomists) 
of currently undescribed species, and the lack of sampling of 
many rarer habitats, information is likely to be lacking for many 
taxa; indeed, new genera and species with limited distributions 
are still regularly collected (e.g. Aupouriella, a Northland mayfl y; 
Winterbourn 2009). All these indicators suggest New Zealand’s 
invertebrate fauna is faring no better than the international fauna 
or New Zealand’s freshwater fi sh, and the apparent dearth of 
focused monitoring of rare or endangered invertebrates bodes ill 
for the future of our smaller aquatic taxa.

Drivers of freshwater invertebrate declines
Clearly, the multiple stressors on water bodies throughout 

New Zealand, which may be linked with the decline in fi sh diver-
sity discussed above, potentially contribute to declines in diversity 
of the invertebrate fauna. For invertebrates, these stressors include 
water abstraction for industrial, domestic and agricultural needs 
(Poff et al. 2003; Arthington et al. 2006; Dewson et al. 2007; Poff 
and Zimmerman 2010); changes in fl ow regime (Poff et al. 1997, 
2007); invasive species (Olden et al. 2010); channelisation, sedi-
mentation, and eutrophication (Carpenter et al. 1998; Allan 2004; 
Clapcott et al. 2012); changes in riparian vegetation; and changing 
climate (Palmer et al. 2008; Strayer and Dudgeon 2010).

One of the most pervasive stresses for New Zealand stream 
ecosystems is agricultural intensifi cation (Quinn 2000). Several 
studies found greater freshwater invertebrate diversity in forested 
land than in agricultural land (Quinn and Hickey 1990; Harding 
and Winterbourn 1995; Death and Collier 2010). In contrast, 
three separate studies found similar richness in forested and 
non-forested streams (Townsend et al. 1997; Quinn et al. 1997; 
Scarsbrook and Halliday 1999). When Death (2002) and Death 
and Zimmermann (2005) examined the effect of canopy removal 
on periphyton biomass, a major invertebrate food source, they 
found periphyton biomass increased, resulting in increased 
diversity. However, the agricultural sites differed from the forest 
sites only by the absence of forest canopy whereas agricultural 
streams in other studies will in addition be affected by a range 
of anthropogenic disturbances arising from changes in land use. 
Although the effects of agriculture on diversity in streams may 
depend on the exact nature of intensifi cation, the change in land 
use from native forest clearly affects the taxonomic composition 
of those communities: they switch from a fauna dominated by 
Ephemeroptera, Plecoptera and Trichoptera to one dominated 
by Mollusca, Chironomidae and Oligochaeta (Harding and 
Winterbourn 1995; Quinn 2000). However, because all these taxa 
are represented more or less equally in our threatened species 
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lists, it remains unclear how this massive change in land use may 
have affected the national diversity of our aquatic invertebrates.

Linking freshwater invertebrate species loss to ecosystem services 
and functioning

As noted earlier, stream invertebrates play a pivotal role 
in the food web of rivers and streams. The role of biodiversity 
in ecosystem function has been a major theme of research in 
ecology (e.g. Kinzig et al. 2001; Loreau et al. 2002; Srivastava 
and Vellend 2005; Cardinale et al. 2012), and the role of aquatic 
invertebrate diversity in the functioning of Northern Hemisphere 
stream ecosystems has been thoroughly investigated (e.g. 
Jonsson et al. 2001, 2002; Gessner and Chauvet 2002). However, 
in New Zealand the role of biodiversity in the functioning of 
running-water ecosystems has had little attention, although the 
role of ecosystem function for assessing ecological health has 
been studied extensively (e.g. Young et al. 2004, 2008; Death 
et al. 2009; Young and Collier 2009; Clapcott et al. 2010). Given 
the likely impacts of ecosystem stress on biodiversity and the 
link between environmental impairment and ecosystem function, 
invertebrate diversity is almost certainly linked directly to the 
proper functioning of New Zealand’s river ecosystems, as it is in 
the Northern Hemisphere. In particular, the link between diversity 
and leaf decomposition (one of a number of potential ecosystem 
functions) has been a traditional focus of ecosystem health 
assessment, and this link has also been the focus of research on 
relationships between Northern Hemisphere stream biodiver-
sity and ecosystem function. Unfortunately, the lack of obligate 
shredders in New Zealand streams may have discouraged fresh-
water ecologists in New Zealand from examining this link. Many 
other ecosystem functions are also directly affected by in-stream 
biodiversity, and these include many that can be considered 
human ecosystem services, such as nutrient cycling (Cardinale 
et al. 2002; Cardinale 2011). Yet again, there is clearly a large 
gap in New Zealand research on the linkage between biodiversity, 
ecosystem function and environmental stress.
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