Genomics, Stoats, & Predator Free New Zealand

Dr Andrew Veale, Wildlife Ecologist: Manaaki Whenua Landcare Research

Stoats and Islands

0 200 400 600 800 1000 1200

0 -

The stoat genome

			TP	
	15	11	**	=
1	2	3	4q	5
11 6	14	84	11 9	
88	11	5.5		
10	11	12	13	
58		8.8		
14	15	16	17	
4.4				1.
18	19	20		XY

4n

Vertebrate Genome Project

- Combines 4 sequencing technologies (Pacbio, 10x, bionano, Hi-C)
- Gapless telomere to telomere chromosome level assemblies.

VGP standard 1.6 pipeline

Quantum leap in genetic resolution

- 30,133 SNPs (Waiheke Island)
- 55,880 SNPs (Taranaki)
- 17 microsatellites(What I used for my PhD)

Log10 genotype probability for population Waiheke

Waiheke stoat genetics

of stoats caught per trap (Waiheke Island)

Genetic distance vs geographic distance

Histogram of distances between close kin pairs

Waiheke Stoat relatedness

- Relatedness of all stoats vs all stoats
- Diagonal "self relatedness"
- Red = highly related
- Orange = moderately related
- Yellow = low relatedness
- Clustered so related individuals are next to each other.
- Square structures of orange are litters.

Two litters sharing one individual

- Here's a zoom in on that cluster of individuals
- There are two groups of evenly related individuals
- This probably represents 2 litters.
- One individual is shared between the two
- Two options:
- 2 litters from the same mother (different years)
- 2 litters with a daughter from one year being the mother for the second

Waiheke summary

- This project can be used to parameterize our models very important!
- Both males and females are avoiding trapping for over a year so the population is persisting.
- If trapping ceases the island will reach carrying capacity within 2 years (maybe just 1 year).
- IMHO with dogs, cameras, new lures and toxin it will succeed (largest ever stoat eradication).
- Given the challenges here, mainland operations are in trouble...

Taranaki mustelids

Chi squared equals 0.085 with 1 degrees of freedom. The two-tailed P value equals 0.7705

Chi squared equals 11.879 with 1 degrees of freedom. The two-tailed <u>P value equals 0.0006</u>

Forensics

Sequenced genome

SNP panel developing for stoats

Already able to use microsatellites for forensics (with fresh samples)

With some development we can enhance our resolution.

- 17 March 2020 female stoat recorded in park
- 21st Dec 2020 2 stoats seen together in park
- January 2021 two stoats caught
- May 2021 three stoats live trapped
- July 2021 2 more stoats trapped

Key to the incursion response: dogs, thermal cameras, forensic genetics using the scat

1. Identify potential target proteins

• Genomes provide target libraries (proteomes)

Image: Patrick Garvey

2. Compare targets between species

Whole sequence
 3D protein homology modelling

PDB: 5TGZ

Gene drives for PF2050

Normal inheritance

Altered gene does not spread

Gene drive inheritance

Altered gene is always inherited

	Litter size	Minimum generation time	Genome?	Average Life expectancy	Maximum Life expectancy
Mouse	7	10 weeks	Excellent	2	4
Ship rat	7	8 weeks	Excellent	1	4
Norway rat	7	8 weeks	Excellent	1	4
Kiore	7	8 weeks	No	1	3
Weasel	7	1 year	In progress	1	8
Stoat	10	2 years	Excellent	2	6
Ferret	6	2 years	Very Good	3	8
Possum	1	2 years	Excellent	5	13

Generation time really matters

Modelling by Thomas Prowse.

Best practice (eradication)

- 1. Combine toxin and trapping
- 2. Pulsed toxin in winter.
- 3. When reinvasion is likely, biyearly pulsed toxin in perpetuity.
- 4. Suppress/eradicate prey species
- 5. 250 x 250 m trapping grid
- 6. Optimised trap location for microhabitat
- 7. Multiple new lures have good potential (Boffa Miskell, ferret and stoat bedding, sound lures)
- 8. Detector dogs & genetics of scat.
- 9. Cameras for monitoring
- 10. Maintain all traps indefinitely
- 11. Mop up with toxic rodents

Eradication of mustelids (In my humble opinion)

- Only one PF2050 project in the country is a mustelid eradication (Waiheke Island)
- Possibly Otago Peninsula is, but only for ferrets.
- Capital Kiwi is doing a great job at suppression.
- Research is required for novel tools and these are likely to not be around trapping (genetics, diseases, toxin distribution).
- Without aerial toxin there is no mustelid eradication currently.

Acknowledgements

People:

- Jo Ritchie, Paul Kviecinskas, Frank Lepara, Mary Frankham et al at. TKOW
- Jordan Lasenby, Tim Sjoberg, Paul Prip, Toby Shanley, Sam Haultain
- John McEwan, Rudi et al at AgResearch
- Matt Maitland, Emma Whitton
- Julia Allwood, Talia Bruv-Cubitt
- Tom Etherington, Grant
 Norbury, Chris Niebuhr, Chris
 Jones, John Innes, Erica
 Hendrikse (MWLR)

@Dr Stoat

Andrew Veale VealeA@landcareresearch.co.nz

Thank you!!!

