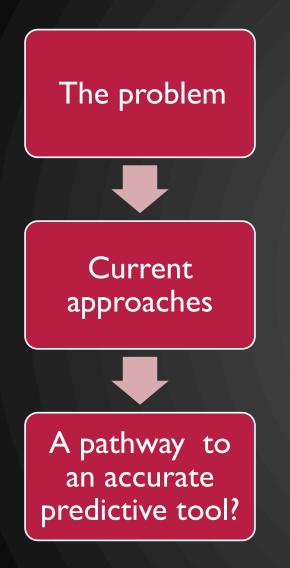
AMY VAUGHAN

PREDICTING INVASIVENESS USING HIGH PRIORITY EXEMPLAR SPECIES

THETEAM

Co-leads

- Manpreet Dhami- MWLR
- Ang McGaughran- UoW

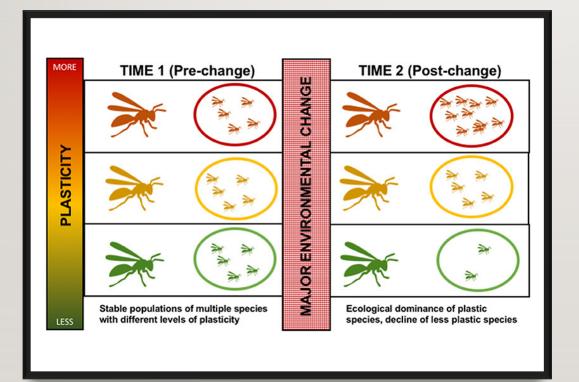

Postdoc

- Ellie Parvizi- UoW
- Machine Learning advisor
- Tony Smith- UoW

PREDICTING INVASIVENESS USING HIGH PRIORITY EXEMPLAR SPECIES

INVASIVE SPECIES

Threaten native biota and impact primary industries


Increased trade and climate change increase vulnerability

Exotic organisms that impact health, agriculture, freshwater and indigenous flora and fauna

MECHANISMS OF INVASION

A MECHANISTIC ABILITY TO INVADE

Manfredini F, Arbetman M, Toth AL. A Potential Role for Phenotypic Plasticity in Invasions and Declines of Social Insects. Frontiers in Ecology and Evolution. 2019;7.

Genomic mechanisms of invasiveness

Duplications/ SNPs

Acquired beneficial traits

AOTEAROA NEW ZEALAND

Impact globally (\$70b USD)

Impact New Zealand (\$4.3b NZD)

Land use and traffic increases invasive species

Risk escalating

CURRENT PREDICTION METHODS

• Environmental factors - currently using climate

• Risk pathways

- Statistical profiling from traits database
 - Occurrence, morphology, behaviour

• Genomics - the way forward?

Likelihood of entry

RISK ASSESSMENT

Likelihood of establishment

Likelihood of spread

Impact (social, cultural, environmental, economic)

Likelihood of entry

RISK ASSESSMENT

Likelihood of establishment

Likelihood of spread

Impact (social, cultural, environmental, economic)

Likelihood of entry

RISK ASSESSMENT

Likelihood of establishment

Likelihood of spread

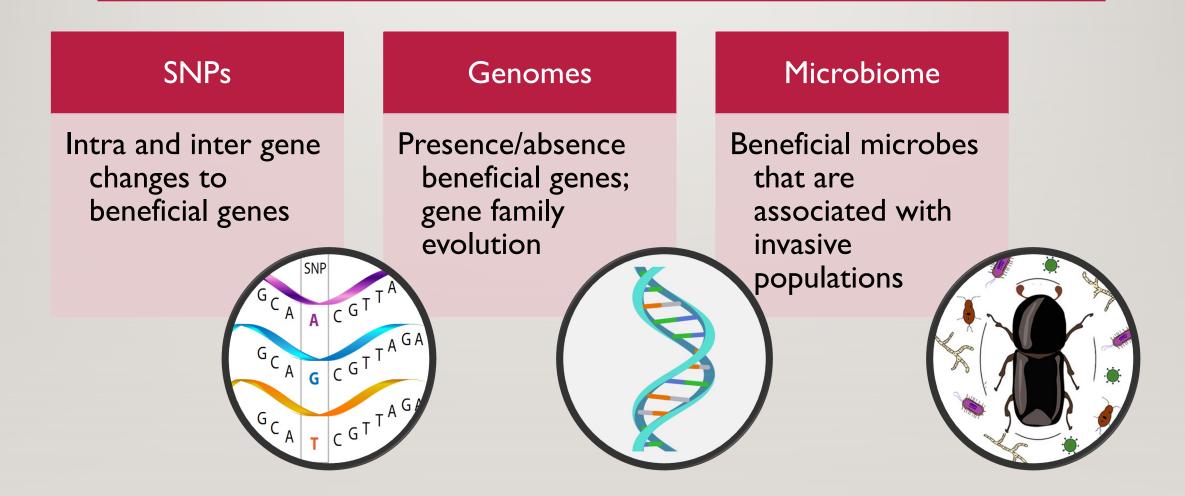
Impact (social, cultural, environmental, economic)

GENOMIC TRAITS-BASED MACHINE LEARNING FRAMEWORK

Identify genome encoded features that are associated with an organism's ability to proliferate Training framework using known invasive species to produce a scaled prediction output that categorises risk High risk, medium risk, low risk categorisation

Using data to predict output values- in this case invasiveness score

MACHINE LEARNING

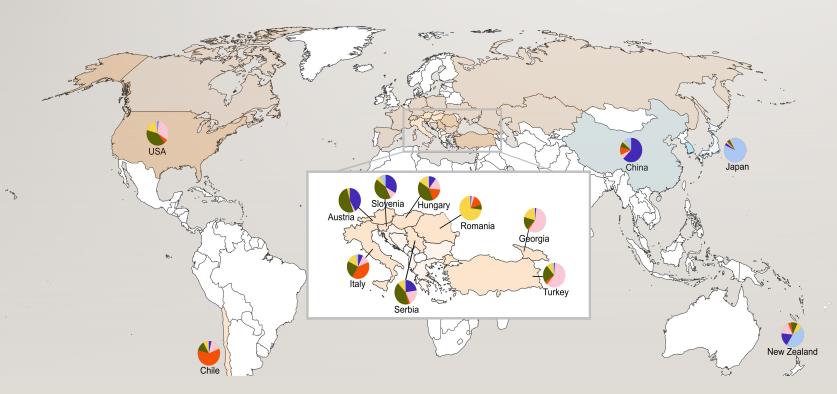


Predicting patterns within the data

ğ

Characteristics determining 'invasiveness' not well defined

DATA TYPES FOR IDENTIFICATION OF GENOMIC TRAITS


Queensland fruit fly

POPULATION GENOMICS

- Tracing sources of invasion
- Understanding the role of evolutionary adaptation in invasion success
- Predicting invasion potential
- Development of a comprehensive database of genomic traits from invasive and non-invasive populations

BIOSECURITY APPLICATIONS

- Predictive score of invasiveness for imminent threats
- Better management and biosecurity outcomes
 with potential for any mechanistic insights
- Particularly useful for 'unknown' species (e.g., fungi, viruses, bacteria)
 - Ultimately, the tool will be species agnostic

THANKS! ANY QUESTIONS?

Acknowledgements

• MPI

• Advisory group: David Teulon (Better Border Biosecurity, P&F Research)

Travis Glare (BioProtection Research Centre)

Thomas Buckley (MWLR, Auckland University, Genomics Aotearoa)

Tony Smith (UoW)

Melissa Jordan (Plant & Food Research)

Kim Handley (GA Bioinformatics project, University of Auckland)

