Manaaki Whenua Landcare Research

Research needs for effective wallaby management in New Zealand

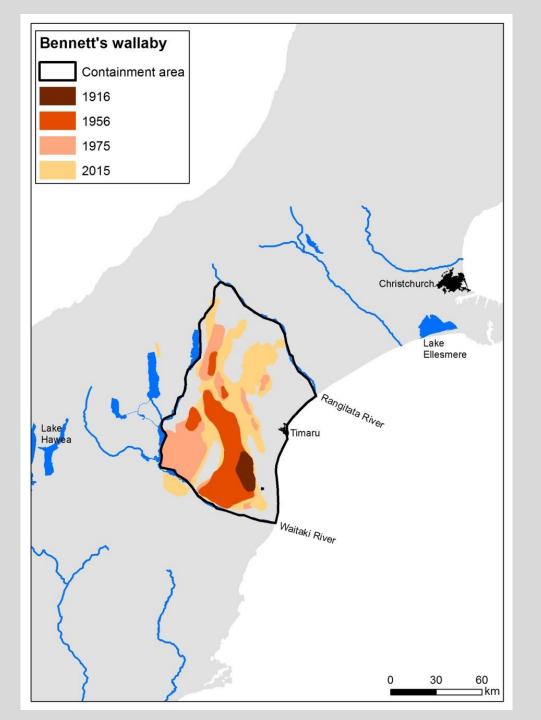
Dave Latham Wildlife Ecologist

Manaaki Whenua Landcare Research

Research needs for effective wallaby management in New Zealand

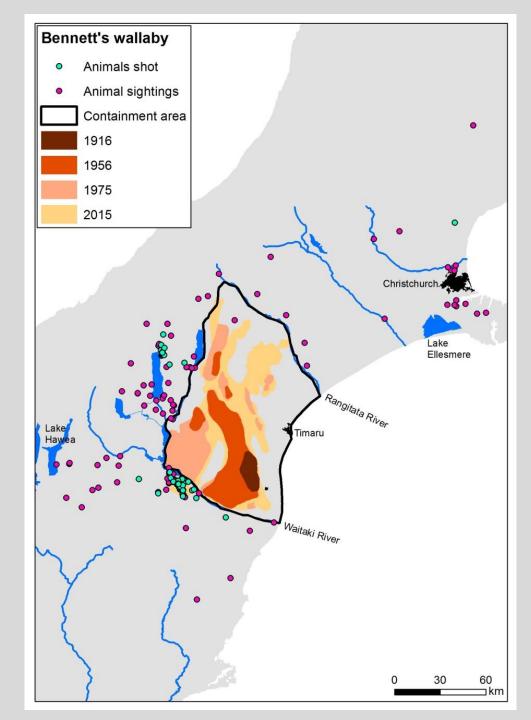
Management of Bennett's wallaby – having confidence in no detections

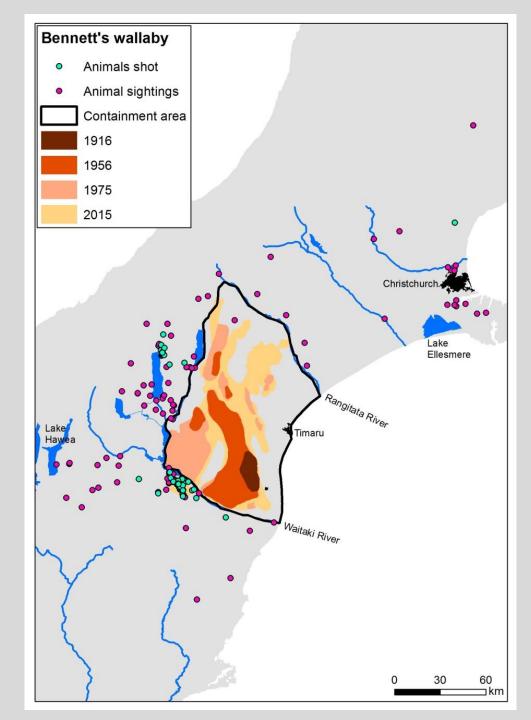
Dave Latham Wildlife Ecologist


Acknowledgements

- Co-authors: Dean Anderson, Rachelle Binny, Simon Howard, Cecilia Latham and Bruce Warburton
- Other support:
 - Waitaki Wallaby Liaison Group
 - MPI SFF, ECan, ORC and MWLR SSIF
 - John Abelen, Glen Cary; Tom Bell, Blue Cliffs; Guy King, The Grampians
 - Corrie Tegelaars ground-netting wallabies
 - Heliventures NZ net-gunning wallabies
 - Ross Chilton and Lloyd Brown ground surveys
 - Grant Halverson and Jordan Munn thermal cameras
 - Brent Glentworth logistical support and feedback

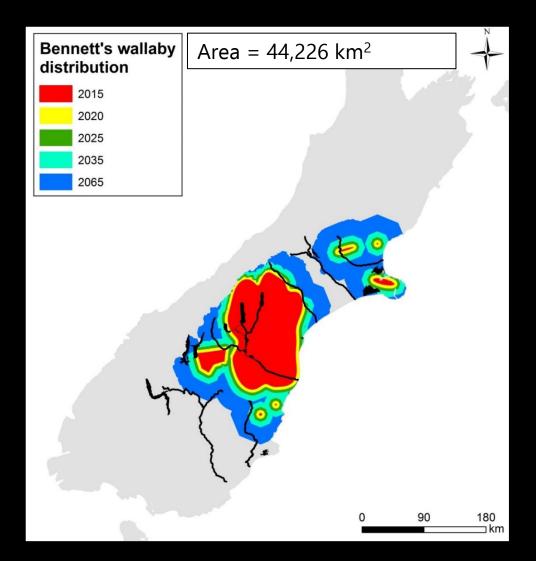
Background


- Research objectives are relevant to all species of wallaby in NZ, but our research focused on Bennett's wallaby
- Liberated in Hunters Hills, SI, in 1874
- Established and became invasive
- Unwanted impacts in production landscapes and on native vegetation


Distribution

• 2015 core range: 5,300 km²

Distribution


- 2015 core range: 5,300 km²
- Range incl. low density peripheral populations: 14,000 km²

Distribution

- 2015 core range: 5,300 km²
- Range incl. low density peripheral populations: 14,000 km²
- Populations outside the Containment Area are key starting points for eradication

Predicted distribution in 50 years (without intensive control)

Objectives

- The National Wallaby Eradication Programme
 - Strategic objective: eradication of all species of wallaby from NZ
- This objective requires a tool to guide how much survey effort is needed to have confidence that a targeted wallaby population has been eradicated
- What do I mean by this?
 - If one or more wallabies are seen after an eradication attempt, eradication was clearly not successful
 - But what if the target area is surveyed and no wallabies are seen?
 - Is it because there are no wallabies present, or wallabies are present but were not seen?

Objectives

- Subtitle: Management of Bennett's wallaby having confidence in no detections
- Having confidence that no detections equals no wallabies is critical for eradication, i.e., stopping removal too early will allow survivors to recover and stopping too late will waste funding

Objectives

- Determine detection probabilities and surveillance sensitivity for a suite of survey methods for proof of eradication modelling
- Two critical points:
 - 1. We did not compare the relative effectiveness of different detection methods for sustained control (or kill rates achieved, etc)
 - 2. We assessed detection probabilities, not detection rates

Terminology

- Detection rates enable us to determine how well one survey method performs compared with another method, or over time
 - It does not inform us about number of animals not detected
 - However, if a method has a high detection rate, its detection probability will, on average, also be high
- The probability of detection is the probability of a survey method detecting a specific individual given that the individual is present in the detection range at a specified time
- The surveillance system sensitivity is the probability that multiple survey devices or search paths will detect a specific individual given that it is present anywhere within the total area of interest

Methodology

- Determined detection probabilities for:
 - Ground hunter with dogs
 - Helicopter observers
 - Helicopter with a thermal imaging camera
 - Camera traps

Methodology

- Determined detection probabilities for:
 - Ground hunter with dogs
 - Helicopter observers
 - Helicopter with a thermal imaging camera
 - Camera traps
- Used detection probabilities and search effort to estimate surveillance sensitivity for each survey method and used this information to develop a proof of eradication model

Methodology

How do we estimate detection probabilities?

- 1 We need to know how many animals were in the area
- 2 AND we need to know how many of these we detected
- This is critical as it gives us our detection probability for each survey method
- Estimating N is difficult in wild populations

GPS collars

- Our approach was to capture wallabies and deploy a GPS collar on them that took a fix at 5 s intervals
- This provided a known N for potential detection

PAGE 16

PAGE 17

GPS collars

- Our approach was to capture wallabies and deploy a GPS collar on them that took a fix at 5 s intervals
- This provided a known N for potential detection
- We knew how many animals 'could' have been seen when the helicopter flew by, or the ground-hunter walked by, and we could compare this with how many were actually seen for each survey method

Results

• 38 wallabies collared; 30 provided usable GPS data

Method	Collared wallabies			
	No. seen	No. available to be seen	Avg. prob. detection	
Ground-hunter	34	59	0.56	
Aerial observer	25	159	0.16	
Thermal imaging	12	54	0.14	

- Probability of detection is calculated for the number of collared individuals that were available to be seen. For example:
 - Some collared wallabies moved out of the study area
 - Not all methods have the same field of view

PAGE 19

Results

Method	Prob. Detection	All wallabies		
		Total wallabies seen	No. seen per km surveyed	
Ground- hunter	0.56	394	7.8	
Aerial observer	0.16	266	0.7	
Thermal imaging	0.14	342	0.9	

Surveillance sensitivity (SSe) for mobile methods

- SSe = detection probabilities & search effort (coverage)
- Varies between 0 (insensitive) and 1 (perfect sensitivity)
- Standardised for a 1km search transect in a 100ha survey area

L	Method	SSe
	Ground hunter	0.172
1 km	Aerial observer	0.042
100 ha	Thermal imaging	0.022

PAGE 21

SSe for each survey method and probability of wallaby absence

• For a hypothetical 100 ha survey area, with **NO** wallabies detected

Method	Effort of single survey	SSe (1 survey)	Effort required for 95% Prob. absence
Ground hunter	Full coverage (~5 transects)	0.45	5 surveys
Aerial observer	Full coverage (~4 transects)	0.13	21 surveys
Thermal imaging	Full coverage (~10 transects)	0.20	14 surveys
Camera traps	16 cameras; 300m × 300m spacing; 80 nights	0.82	160 nights

une 21

Comparative costs (based on our work)

	Thermal	Aerial Observer	Ground hunter with Dogs	Camera
Speed	60	60	4	—
Swath	100	300	200	_
\$/hr	1800	1800	50	50
Ha/hr	600	1800	80	6.25
\$/ha	3.00	1.00	0.63	8
Surveillance sensitivity	0.20	0.13	0.45	0.82
Desired surveillance sensitivity	0.95	0.95	0.95	0.95
N. repeat surveys required	14	21	5	160
Total surveillance \$/ha	\$42.00	\$21.00	\$3.13	\$8.00

Limitations

- We developed a surveillance protocol for proof of eradication modelling for Bennett's wallaby
- This model needed quantitative empirical data for each survey method
- Scientific constraints may have biased some survey methods, especially the thermal imaging camera
- We could not determine effort (swath width) for thermal if the operator 'hunted' with the camera
 - A key research need when the technology permits
- Using thermal on UAV is another research need

Summary

- Ground hunters with dogs and camera traps performed well, but are unable to cover large areas rapidly unless a very large pool of hunters / trail cameras are available
- Aerial methods were less effective and more expensive (/ ha), but will be critical for surveying large areas within required timeframes
- The methodological approach detailed here will be critical for achieving wallaby eradication
- We need better and more data for parameterising the proof of eradication model
 - Thermal imaging camera operated from a helicopter and UAV
 - Other species of wallabies