The pathway to precision pest control:

Species-specific toxin development

Dr Erica Hendrikse Post-doctoral Researcher

The pathway to precision pest control:

Species-specific toxin development

2. Research approach

1. Why?

3. Progress and path forward

Introduced mammals are devastating for NZ's native wildlife

An expanded toxin toolbox would help to achieve our pest control goals in Aotearoa

Images: DOC, Unsplash

New toxin wishlist for pest control

- Highly selective
 - Species-specific or family-specific
- Improved animal welfare
- Low environmental impact
- Cost effective
- Easy to manufacture
- e.t.c...

Swiss Cheese Model of Risk Management

Harm to non-target species

Toxin Delivery

The pathway to precision pest control:

Species-specific toxin development

2. Research approach

1. Why?

3. Progress and path forward

Target-driven toxin discovery

Potential toxin targets for validation

1. Genomes provide protein target library

- Recent development
- Genomes now available for:
 - Stoat
 - Ship rat
 - Possum

Image: Patrick Garvey

XXX

1. Genomes provide protein target library

- Target pests
- Non-target species
 - Birds,
 - Livestock
 - Humans

- G protein-coupled receptors
 - Transmembrane proteins
 - Physiologically important
 - Highly druggable
 - Well-studied
 - Chemical probes available

2. Identify proteins critical for life

- Identify groups of genes critical for life
- G protein-coupled receptors
 - Highly druggable
 - Transmembrane proteins
- Cardiac function genes

• Use sequence alignment to identify differences across species

• Use sequence alignment to identify differences across species

Use sequence alignment to identify differences across species

- How different do target proteins need to be between species?
- Exact sequence identity will depend on location – functional domain
- Examples of species-specific pharmacology based on as little as 1 amino acid

Ter Haar et al., 2010

3. Identify targets that differ between species

• Defining 'species-specificity'

- Defining 'species-specificity'
- Toxin should be able to distinguish between animals

Computational Pipeline

Guide to Pharmacology list of GPCRs = bait seq

Confirm 7 transmembrane domains (Pfam, HMMER)

Custom Python script

GPCRs

Domains

Orthologs

- OrthoFinder, reciprocal BLAST, annotation
- Custom R script

• MUSCLE, MAFFT, Clustal

= genome mining

What is NeSI?

New Zealand eScience Infrastructure (NeSI) designs, builds, and operates a specialised platform of shared high performance computing infrastructure and a range of eResearch services.

All researchers in New Zealand have access to NeSI.

Contact support@nesi.org.nz

NeSI is a national collaboration of:

NISTRY OF BUSINESS

New Zealand eScience Infrastructure

High performance computing (HPC) and analytics

Data services

Training and researcher skill development

- Training to grow capabilities in NZ research sector •
- Partnership with The Carpentries and Genomics Aotearoa for bioinformatics training

Predictable
Variation
Outliers

- 3D protein homology modelling
- Stoat receptor

 \bigcirc

PDB: 5TGZ

Thanks! Any questions?

Acknowledgements:

Brian Hopkins Andrew Veale

Wildlife Ecology and Management team Genomics Aotearoa NeSI, Aleksandra Pawlik

Figures created with BioRender.com and unsplash.com

⁶⁶ It's crazy and ambitious, but I think it might be worth a shot²²

Sir Paul Callaghan

Targets

OpenTargets