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In silvopastoral environments, landslide erosion results in loss of productive soils and pasture. Sediment deliv-
ered to streams from landslides contributes to the degradation of freshwater and marine receiving environments
by smothering benthic habitats and increasing turbidity, light attenuation, and sediment-bound contaminants.
Biological mitigation is an important strategy in pastoral environments to combat landslide erosion and improve
the health of downstream aquatic ecosystems. Using lasso logistic regression, we investigate determinants of
sediment connectivity for a landslide-triggering storm event in 1977 in the Wairarapa, New Zealand. Further-
more, we develop the first morphometric connectivity model to predict the likelihood of sediment delivery to
streams following landslide initiation. We explore a range of connectivity scenarios by defining a set of sinks and
simulating varying rates of sediment generation during flood events of increasing magnitude. The likelihood of
sediment delivery is greatly enhanced where landslide deposits coalesce. Besides scar size variables, overland
flow distance and vertical distance to sink were the most important morphometric predictors of connectivity.
When scar size variables were removed from the connectivity model, median AUROC was reduced from 0.88 to
0.75.

By coupling landslide susceptibility and connectivity predictions in a modular form, we quantify the cost
effectiveness of targeted versus non-targeted approaches to shallow landslide mitigation. Sediment delivery
ratios range from 0.21 to 0.29, equating to an event sediment yield of 3548 t km~2 to 9033 t km™2. Targeted
mitigation of landslide-derived sediment is approximately an order of magnitude more cost-effective than a non-
targeted approach. Compared with a pasture-only baseline, a 34% reduction in sediment delivery can be ach-
ieved by increasing slope stability through spaced tree planting on 6.5% of the pastoral land. The maximum
reduction achievable through comprehensive coverage of widely spaced planting is 56%. The landslide con-
nectivity model provides an objective method to support management decisions relating to mitigation of land-
slide erosion and sediment delivery to streams.

1. Introduction

Shallow landslides are an important mass wasting process and source
of sediment in steep terrain and can have significant downstream im-
pacts on freshwater and marine environments (Ziemer et al., 1991;
Glade, 2003; Rahn, 2005; Broeckx et al., 2016; Dymond et al., 2017; Jia
et al., 2021). In New Zealand, much pastoral farmland is predisposed to
shallow landslide erosion reflecting steep and highly dissected slopes
underlain by soft sedimentary rocks (Basher, 2013). Following European
settlement, deforestation of a large part of the country for pastoral
farming has accelerated landslide erosion rates (Glade, 2003; Fuller and

Rutherfurd, 2021). Shallow translational landslides occur within the
material above the bedrock, i.e., the regolith which includes soil,
saprolite, colluvium and deposits of tephra and loess (Crozier, 1996;
Phillips et al., 2021). They are small, shallow rapid failures that have
been identified as the most common type of mass movement in the New
Zealand landscape (Basher, 2013; Smith et al., 2021; Spiekermann et al.,
2022). Shallow landslides have also been referred to as earth flows (e.g.,
Crozier, 1996) or mud flows (Geertsema et al., 2010) reflecting move-
ment as liquified material (Cruden and Varnes, 1996). Periodic
high-intensity rainfall events regularly trigger large numbers and high
densities of shallow landslides (Crozier, 2018). The landslide deposits of

* Corresponding author at: Manaaki Whenua — Landcare Research, Palmerston North, New Zealand.

E-mail address: spickermannr@landcareresearch.co.nz (R.I. Spiekermann).

https://doi.org/10.1016/j.ecoleng.2022.106676

Received 8 February 2022; Received in revised form 29 March 2022; Accepted 27 April 2022

0925-8574/© 2022 Elsevier B.V. All rights reserved.


mailto:spiekermannr@landcareresearch.co.nz
www.sciencedirect.com/science/journal/09258574
https://www.elsevier.com/locate/ecoleng
https://doi.org/10.1016/j.ecoleng.2022.106676
https://doi.org/10.1016/j.ecoleng.2022.106676
https://doi.org/10.1016/j.ecoleng.2022.106676
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoleng.2022.106676&domain=pdf

R.I Spiekermann et al.

shallow landslide scars (50-100 m?; Betts et al., 2017) are typically long
and narrow and may coalesce with adjacent landslide deposits to
transport and deposit fine sediment in freshwater streams below
(Mondini et al., 2011; Kasai and Yamada, 2019; Bessette-Kirton et al.,
2020). In the long-term, shallow landslides can seriously degrade the
soil resource (De Rose, 1993; Lambert et al., 1984) and, as an important
source of sediment, contribute to the degradation of freshwater quality
and marine receiving environments (Hicks et al., 2011; Davies-Colley,
2013).

The importance of shallow landslides as a contributor to catchment
sediment budgets is spatially and temporally variable as a function of i)
the predisposition of the terrain to landsliding, ii) the frequency and
magnitude of both the triggering mechanism (e.g., rainfall) and the
response (i.e., the landslides), and iii) sediment connectivity that de-
termines off-slope sediment delivery rates. Sediment connectivity de-
scribes both the potential and proficiency of a catchment to facilitate the
conveyance of sediment between its components (Heckmann and Veri-
cat, 2018), that is, the transfer of sediment from a source to sink via
sediment detachment and transport (Bracken et al., 2015; Najafi et al.,
2021). There are a variety of landforms and scales where connected
sediment transfer takes place. These include on hillslopes, between
hillslopes and channels, and within channels (Brierley et al., 2006;
Fuller and Death, 2018). Connectivity is an important concept as it can
help anticipate downstream impacts of hillslope erosion. When consid-
ered as a functional, process-based framework (Bracken et al., 2015), it
can help increase understanding of how erosion and sediment delivery
to streams can have severe downstream effects on water quality and
ecosystem health (Dymond et al., 2017). Moreover, consideration of
connectivity is essential from a sediment management perspective, for
example prioritizing erosion mitigation on hillslopes to reduce sediment
delivery to streams or to improve sediment continuity in catchments
(Simoni et al., 2017). Therefore, this study is concerned with sediment
connectivity in terms of lateral linkages that drive the supply of mate-
rials from slopes to the channel network (Brierley et al., 2006).

Silvopastoralism has been widely adopted as a sustainable land
management and soil conservation tool in New Zealand (Wall et al.,
1997; Benavides et al., 2009; Mackay-Smith et al., 2021). A primary
objective in integrating trees into pastoral hill country is the prevention
of hillslope erosion and delivery of sediment to streams (Thompson and
Luckman, 1993; Basher et al., 2020; Spiekermann et al., 2021, 2022),
since high sediment connectivity can have detrimental outcomes on
riverine and estuarine habitats by reducing the diversity, types, and
abundance of fauna (Fuller and Death, 2021). The introduction of
sediment standards into New Zealand’s National Policy Statement for
Freshwater Management (NPS-FM) has required regional authorities to
manage freshwater in a way that considers the effects of land-use,
including the effects on receiving estuarine environments (New Zea-
land Government, 2020). From a sediment mitigation perspective, both
potential landslide source areas and mobilisation of sediment from
source to channel need to be assessed to support targeted erosion control
through tree planting. In general, targeting mitigation actions to critical
source areas greatly increases the cost-effectiveness of measures (Doody
et al., 2012; McDowell, 2014; McDowell et al., 2018). Cislaghi and
Bischetti (2019) proposed a modular approach to couple slope stability
modelling and connectivity. Similar methods have been used for
modelling sediment delivery from debris flows (Burton and Bathurst,
1998), surface erosion (Poeppl et al., 2019; Zhao et al., 2020; Najafi
etal., 2021b), and large wood recruitment to streams (Rigon et al., 2012;
Lucia et al., 2015). These approaches adopt either physical or statistical
models to predict slope stability, followed by a prediction of run-out
length to determine the degree of connectivity. While landslide con-
nectivity models have been categorised by various authors (e.g., Rick-
enmann, 2005; Cislaghi and Bischetti, 2019; Najafi et al., 2021), the
most common methods use either a limiting criterion (e.g., involving
critical slope and deposition zone; e.g., Bathurst et al. (1997) or Dymond
et al. (2006)), or some variation of an empirically fitted relationship
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between landslide volume and runout length (e.g., Cislaghi and Bis-
chetti, 2019), which may be extended to include additional factors
influencing run-out distance such as travel angle or fall height (Coro-
minas, 1996; Bessette-Kirton et al., 2020). Other approaches to identify
erosion source and deposition areas include the use of repeat digital
elevation models (Croke et al., 2013; Heckmann and Vericat, 2018;
Scheipp and Wegmann, 2022), mathematical graph theory (Heckmann
and Schwanghart, 2013), and a two-parameter friction model (Wich-
mann et al., 2009).

The index of connectivity (IC) developed by Borselli et al. (2008) and
further developed by Cavalli et al. (2013) has been widely adopted.
Najafi et al. (2021a) reviewed the IC and discussed its limitations, which
relate to the interpretation of the index as well as the lack of quantitative
validation. However, the IC has been successfully used as a predictor of
muddy flood-affected sites (De Walque et al., 2017) and sediment
transfer between sediment sources (e.g., landslides, debris flows, sheet,
and rill erosion) and water channels (e.g., Najafi et al., 2021b; Martini
et al., 2022). Najafi et al. (2021a) also made an important distinction
between structural and functional connectivity concepts. The IC aims to
represent structural sediment connectivity based on (high-resolution)
topographic influences on sediment flux. Since the IC fails to represent
process-specific characteristics of sediment source and transport, in-
consistencies can arise when comparing IC values to process-specific
modelling (Cislaghi and Bischetti, 2019; Poeppl et al., 2019; Zhao
et al., 2020). Thus, the IC is a useful tool for representing structural
connectivity but is less well suited for modelling functional connectivity
(Martini et al., 2022).

Against this background, we follow a modular approach proposed by
Cislaghi and Bischetti (2019) for shallow landslides by coupling a
landslide susceptibility model with a connectivity model. Since the use
of universal empirical relationships between scar size and run-out dis-
tance is known to perform poorly because it disregards multiple factors
that determine connectivity (Corominas, 1996; Cislaghi and Bischetti,
2019), we develop the first statistical connectivity model for shallow
landslides using binary logistic regression. The advantages of this
approach are its limited data requirements, which consist of a high-
resolution DEM for generating morphometric predictors and mapped
landslide scars and deposits used to fit the model.

In addition, we consider a range of sediment delivery scenarios by
defining a series of sinks and short- to long-term sediment stores in
recognition of the observed variation in run-out behaviour — from
insipient failures to strong, stiff plastic flows and — in their most fluid
state, a slurry flow of material (Crozier, 1996). This allows a preliminary
investigation of temporal dynamics in connectivity and considers the
potential for deposited material to be reworked during subsequent
rainfall events, for example, increased recruitment of sediment by
overland flow across saturated soils adjacent to streams. A further
objective of this paper is to assess sediment delivery from shallow
landslides under different land management scenarios at the scale of
widely spaced individual trees. We quantify sediment delivery re-
ductions compared to a pasture-only baseline using the following con-
ditions: 1) existing tree cover, 2) targeted mitigation to slopes with high
landslide susceptibility and high sediment connectivity, and 3) complete
tree cover using a 15 x 15 m grid of poplar trees. Predictions are made
for 50 pastoral farms in the Wairarapa hill country to quantify the re-
ductions in sediment delivery from shallow landslides under the
different land management scenarios. We also 1) provide an assessment
of cost effectiveness based on the number of trees required to achieve the
respective outcomes, 2) quantify the cost-effectiveness of targeted
versus non-targeted erosion control, and 3) discuss the implications for
land management.
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2. Data and methods
2.1. Study area

An inventory comprising shallow landslide scars and deposits map-
ped across a 700-ha area of steep pastoral farmland east of Masterton in
the Wairarapa of New Zealand (Fig. 1) forms the basis of the present
study. The study area is part of a 1700 ha sheep and beef farm, which has
been the focus of many previous studies on soil erosion (e.g., Crozier
et al., 1980; Lambert et al., 1984; Rosser and Ross, 2011; De Rose, 2013;
Basher et al., 2018; Spiekermann et al., 2021; Spiekermann et al., 2022).
The layer of indigenous vegetation was cleared for pastoral farming
between 1860 and 1890 (Lambert et al., 1984). Besides small patches of
naturally regenerating Leptospermum scoparium (manuka) and Kunzea
spp. (kanuka) visible in historic imagery, woody vegetation was largely
absent in the study area until the 1980s when soil conservation works
began to populate hillslopes with widely spaced poplar, willow, and
eucalyptus trees. The morphology is best characterised by its steep,
highly dissected terrain with narrow ridge and spur crests, hillslopes
mostly between 15° and 35° that are underlain by highly erodible
Neogene-aged sedimentary rocks. These consist mostly of massive,
poorly bedded sandstone and coarse siltstone, partially overlain by a
loess mantle. Brown loamy soils (Waitataura_14a.1) are most common
in the study area and are moderately well drained (Lilburne et al., 2012).
However, a dense subsoil zone of slow permeability provides a failure
plane for shallow landslides (De Rose, 2013). Gley soils (Taihape_10a.1;
Lilburne et al., 2012) are commonly found on the lower slopes and
valley bottoms. A large gully has formed in the northern section of the
study area within an area of massive mudstone. To the west of the gully,
an area largely devoid of landslides is part of a band of coquina lime-
stone that extends farther to the south-west of the study area. Mean
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annual rainfall is approximately 1100 mm, with wet winters and dryer
summers the norm.

2.2. Data and data preparation

2.2.1. Landslide inventory

Beginning 18/09/1977, a rainfall event lasting five days (with 137
mm rainfall recorded at the nearest weather station — Gladstone) caused
very extensive shallow landsliding in the Wairarapa hills (De Rose,
2013). Wet winter months preceding the rainfall event contributed to
high antecedent soil moisture conditions. An aerial survey captured
photography at a scale of 1:25000 shortly after the event, on 10/10/
1977, which allowed scars and landslide deposits to be identified and
differentiated (Fig. 1). Mapping was enhanced by producing raster ob-
jects via the multiresolution segmentation algorithm in eCognition using
the panchromatic image from 1977, the DEM and slope grids as inputs.
Scars and landslide deposits were classified based on the brightness
(mean and standard deviation) of image objects and a slope gradient
threshold of 30° aimed at removing most false positives. Image objects
adjacent and at lower elevation to mapped scars were classified as
landslide deposits while increasing thresholds for mean slope and
brightness to allow for greater variation caused by conglomerates of turf
and sediment in image objects. The process of landslide deposit classi-
fication was done iteratively to allow landslide deposits to expand
downslope. Manual refinement of the classification was performed
across the entire study area by selecting and removing falsely classified
objects. The ruleset description can be viewed in the supplementary
material. The final landslide inventory includes 2002 scars and 1216
landslide deposits. Of these scars, 446 have no obvious landslide deposit,
which suggests these may represent incipient failures or intact rafts of
turf. A further 571 scars had a single deposit, whereas the remaining 985

Fig. 1. Insert A: 1977 imagery with landslide scars and deposits; Insert B: Lithology; Insert C: Landscape photo within study area showing steep, deeply dissected
terrain (Source: Ebony Davison). Note: Location of study area in New Zealand is shown in Fig. 3.
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scars have landslide deposits that coalesced with adjacent landslide
deposits.

2.2.2. Landslide connectivity scenarios

In this study, landslide connectivity is operationalized through a
simple definition: A shallow landslide is defined as connected when its
landslide deposit intersects with a pre-defined sink, which we refer to as
a connectivity target. This definition results in a binary classification of
landslide scars as “connected” (LC) or “unconnected” (LU), and there-
fore lends itself to a statistical investigation of the factors that determine
connectivity based on a Bernoulli distribution. In addition, this study
aims to investigate the dependence of connectivity on the definition of
the connectivity target by assessing changes to the Bernoulli distribution
as well as change in effect size of variables. Therefore, we define a set of
six connectivity targets using a LiDAR-derived stream network and the
topographic wetness index (TWI). The varying connectivity targets are
designed to test the effect of different catchment hydrological conditions
on sediment delivery. This allows exploration of how timing of land-
slides either within-storm or differences in soil wetness between storms
may affect sediment delivery.

The first connectivity target is defined by a stream network that was
generated using the 1-m DEM, following the standard procedure of
filling terrain depressions with the Fill Sinks XXL function (proposed for
LiDAR DEM processing by Wang and Liu, 2006) and a flow algorithm
(Quinn et al., 1991). A stream initiation value of 6400 m? was set, which
was identified as a suitable threshold in mudstone terrain for permanent,
intermittent, and ephemeral streams (Storey and Wadhwa, 2009). The
streams were buffered by 5 m and the polygon used to represent the first
of six targets. We refer to this connectivity target as “Streams”.

The remaining five connectivity targets were defined using the TWI,
which is a measure for accumulated water or soil saturation (Moore
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et al., 1988; 1991), calculated as:

SCA
TWI = In| —
sg

where SCA is the specific catchment area, and sg is slope gradient in
radians. We set the minimum slope in the filled DEM to 0.01 rad to avoid
division by zero during TWI calculation (Kopecky et al., 2021). Slope
was calculated using the 3rd degree polynomial with 10 parameters
(Haralick, 1983), which is the slope algorithm that performed best when
used to predict measured soil moisture as a component of TWI (Kopecky
et al., 2021). Targets were then defined using TWI thresholds based on
the distribution of TWI values in the study area (Fig. 1b). The thresholds
used to represent potential zones of saturated soils correspond to the 75,
80, 85, 90, and 95th percentiles of the TWI distribution in the study area.
A lower cut-off corresponds to a larger hypothesized zone of saturated
soils, which has the effect of increasing the ratio of scar connectivity
(Fig. 2¢; Table 2). TWI zones unconnected from the stream network were
removed. Therefore, the TWI-based connectivity targets are upslope
extensions to the stream network. While the transport capacity of sedi-
ment in these TWI zones is unknown, we expect sediment delivery to
decrease with increasing size of the TWI connectivity target, as there are
more opportunities for deposition to occur on footslopes and floodplains
during the overland flow phase between landslide deposition and sub-
sequent erosion/transport through the TWI-defined saturated area to the
stream channel. Thus, while an increasing proportion of landslide de-
posits intersect the larger connectivity targets, the average proportion of
source material that is ultimately delivered into the stream channel is
reduced compared to landslide deposits delivering directly to the stream
channel.

We differentiate these two aspects of sediment delivery by quanti-
fying the landslide connectivity ratios (the proportion of landslides

Fig. 2. Insert A: Stream network and TWI-based sinks set using percentiles from the distribution shown in Insert B; Insert C: Number of landslide scars connected (1)
and unconnected (0) based on intersection of landslide deposits with respective sinks.



R.I. Spiekermann et al.

connecting to target) and sediment delivery ratios (SDR) for each
respective target. The SDRs were based on the scar area/volume of
connecting landslides. For the Streams target, we assumed that, on
average, connected landslides delivered 50% of mobilised sediment to
sink (Reid and Page, 2002; Jones and Preston, 2012). For sediment
deposited to the Streams target, sediment transport in the channel
network is accelerated by in-stream processes.

We consider SDR to be both a function of 1) the LCR (number of
landslide deposits connecting to target) and 2) the capacity to maintain
sediment transport from source (landslide scar) to sink (stream).
Therefore, we assume the rate of delivery to the water channel is
reduced by increments of 5% with each successive TWI-based connec-
tivity target (TWI-p.95: 45% — TWI-p.75: 25%) to reflect the hypothe-
sized reduction in transport capacity from the initial landslide
deposition and subsequent transport of sediment to stream channel by
overland flow — either within or post rainfall event. In the absence of
empirical evidence to support this assumption, this approach is aimed at
modelling the reduction in recruitment and transport capacity in areas
of increasing distance from the water channel to explore the dependence
on assumptions related to sink definition and transport capacity. Besides
distance, the roughness in surface morphology of footslopes and toe-
slopes may impede particles being entrained in overland flow. SDRs thus
describe the proportion of all mobilised material entering the water-
course or to an area where overland flow is likely to allow sediment
transport to continue, albeit at a reduced rate. The TWI-based connec-
tivity targets are, thus, designed to characterize potential increases in
SDR through surface run-off erosion post rainfall event (Xiong et al.,
2022). In addition, we compute sediment yields for the landslide trig-
gering event, assuming soil bulk density is 1.4 t m > and an average scar
depth of 1 m (Crozier, 1996).

2.2.3. Explanatory variables

The most common approach for estimating sediment delivery from
landslides to streams is to develop empirical relationships between soil
volume and run-out distance, which may be further refined by consid-
ering the vertical drop (Rickenmann, 1999). Therefore, an important
explanatory variable that determines runout-distance is the initial soil-
involved landslide volume (Corominas, 1996; Crozier, 1996; Cislaghi
and Bischetti, 2019). We include landslide scar area (ScarArea) as an
explanatory variable in the models. Scar area is a reasonable substitute
for volume, since shallow landslides tend to have small depth to area
ratios (Betts et al., 2017). To test the influence of multi-source landslide
deposits on the mobility of sediment material, we also include the total
area of all scars (SumScAr) contributing to any given landslide deposit as
a second variable related to the volume of source material.

The LiDAR digital terrain model (DTM) from Greater Wellington
Regional Council was used at 1-m resolution to generate a set of fourteen
morphometric explanatory variables to investigate their importance as
predictors of connectivity (Table 1). Because landslides were triggered
in 1977 prior to the LiDAR survey, a median filter with 3-m radius was
used to remove minor surface roughness produced by the shallow
landslide scars (ca. 1 m depth; Betts et al., 2017) to approximate the
terrain surface prior to failure. Each landslide scar was converted to a
centroid point (forced inside polygon) and morphometric variables were
extracted at the location of points. The variables were standardized
(centred around the mean and scaled by the standard deviation) prior to
fitting models to allow comparison of coefficient estimates.

Flow Accumulation is the accumulated count of cells flowing into any
given cell (m?). Flow accumulation is therefore a measure for topo-
graphic location with respect to catchment and a proxy for (potential)
surface runoff. Due to the high positive skewness, a log-transformation
of flow accumulation was used. Distance to Channel is the overland
flow distance (m), whereas the Vertical Distance to Channel is the altitude
difference (m) to a pre-defined channel network (see Section 2.2.2).
Slope Height (standardized) and Valley Depth are relative measures for
slope position (Bohner and Selige, 2006). Valley Depth is the normalized
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Table 1
Morphometric explanatory variables used in connectivity model. All variables
are continuous and calculated at 1-m resolution.

Morphometric Parameterization

explanatory variable

Algorithm

1 Log-transformed flow
accumulation (LogFA)

Package: RSAGA,
Library: ta_channels,
Module: 0

Method: Multiple Flow
Direction (MFD)
Convergence = 1

2 Distance to channel Package: RSAGA, Method: MFD
(DisOvrInd) Library: ta_channels,
Module: 4
3 Vertical distance Package: RSAGA,
to channel (VDis) Library = ta_channels,
Module = 4
4 Slope Height Package: RSAGA, w=05t=15e=2
(SlopeSH) Library =
ta_morphometry,
Module = 14
5 Valley depth Package: RSAGA, w=05t=15e=2
(SlopeVD) Library =
ta_morphometry,
Module = 14
6 Easternness Package: qgisprocess:
grass7:r.slope.aspect
7 Northernness Package: qgisprocess,

grass7:r.slope.aspect

8 Slope gradient Package: RSAGA,

(Slope) Library:
ta_morphometry,
Module: 0
9 Downslope distance Package: RSAGA, d =50
gradient (Gradient) Library:
ta_morphometry,
Module: 9
10  Gradient difference Package: RSAGA, d =50
(GradientDif) Library:
ta_morphometry,
Module: 9
11  Topographic Package: RSAGA, r_min = 3, r_-max = 30
Position Index (TPI) Library:
ta_morphometry,
Module: 18

12 Topographic
Wetness Index (TWI)

Package: RSAGA,
Library: ta_hydrology,

Module: 20
13  Topographic Package: RSAGA, r=10
ruggedness index Library:
(TRI) ta_morphometry,
Module: 16
14  Vector Ruggedness Package: RSAGA, r=4
Measure (VRM) Library: ta_hydrology,
Module: 17

difference between slope height and valley depth. Easternness uses the
sine transformation of slope aspect (dx); Northernness the cosine trans-
formation (dy) since aspect is a circular variable. Slope gradient is the
gradient at the centroid of the scar (°; Zevenbergen and Thorne, 1987);
Crozier (1996) found a significant correlation (P < 0.05) between the
surface angle of rupture and runout distance. We include the Downslope
Distance Gradient (Hjerdt et al., 2004), tanag = d/Lg, where Lg is the
horizontal distance to the point with an elevation d meters below the
elevation of the starting cell, following the steepest-direction flow path.
The gradient aims to quantify topographic controls on local hydrology —
specifically groundwater table gradients that are less dependent on local
surface slope. We hypothesize that the Downslope Distance Gradient is
important for sediment delivery as it captures landform-scaled slope
gradient in contrast to local surface slope. In consideration of raster
resolution (1 m) and topography, we selected a d-value of 50 m. Gradient
Difference is the unitless difference between tanag and local surface
gradient (Hjerdt et al., 2004). The Topographic Positioning Index com-
pares the elevation of each cell in a DTM to the mean elevation of a
specified neighbourhood around that cell (Guisan et al., 1999). Thus,
high values correspond with local high points such as ridges, low values
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with local low points such as valley bottoms. The Topographic Wetness
Index is a measure of water accumulation or soil saturation (Moore et al.,
1988), which may influence sediment viscosity of the mobilised mate-
rial, and also the propensity for surface runoff generation. The Topo-
graphic Ruggedness Index is a measure of topographic heterogeneity
within a defined radius (r = 10 m; Riley et al., 1999) and is hypothesized
to influence the downslope depositional rate (Crozier, 1996). Similarly,
the Vector Ruggedness Measure decomposes slope and aspect into 3-
dimensional vectors and calculates the resultant vector magnitude
within a user-specified moving rectangular window (r = 4 m; Sapping-
ton et al., 2007). Each of these variables was processed in R (R Core
Team, 2021) using the packages RSAGA (v. 1.3.0; Brenning et al., 2018)
or qgisprocess (v.0.0.0.9; Dunnington, 2021) and extracted to points
using the raster package (v.3.4-13; Hijmans, 2021).

2.3. The landslide connectivity model

2.3.1. Binary logistic regression with LASSO

The statistical evaluation of landslide connectivity aims to test the
importance of the selected morphometric variables in determining
sediment delivery from hillslopes to streams. For each of the six con-
nectivity targets (Section 2.2.2), an equal number of connected and
unconnected landslide points were selected. Depending on the connec-
tivity target, the number of connected landslides differ between the
minimum of 546 connected to the Streams target and a maximum of
1388 for the TWI-75 target (Table 2). As the area of the zone defined as
the target increases, the degree of landslide connectivity increases.
Therefore, where the ratio of Landslide-Connected to Landslide-
Unconnected (LC:LU) <1, we selected all connected landslide points
and an equal number of randomly sampled unconnected landslide
points, and vice versa where the ratio LC:LU >1. These balanced sets of
landslide points constitute the binary response variable (LU =0, LC=1)
with the corresponding independent explanatory variables (Table 1).

We developed the connectivity models using logistic regression,
which models the probability of a binary response variable (Y = 0|1)
with a Bernoulli distribution. Logistic regression uses the maximum
likelihood estimator to determine parameters fp and f; to find optimum
probability values given a set of predictor variables x;. Variable selection
was automated with the Least Absolute Shrinkage Selection Operator
(lasso; Tibshirani, 1996). The advantage of the lasso method is that
variable selection and coefficient estimation is performed simulta-
neously to generate a model that optimizes for performance while
avoiding over-fitting. This is achieved by minimizing the negative log-
likelihood function (Hastie et al., 2009; Akalin et al., 2020):

Table 2

Number and scar size (mean, standard deviation) of connected and unconnected
landslide scars, as well as fraction ground eroded by connected and unconnected
landslide scars.

Streams TWI- TWI- TWI- TWI- TWI-
p.75 p-80 p.85 p-90 p.95

Landslide scars -

connected (LC) 546 1388 1311 1227 1078 809
Landslide scars -
unconnected 1456 614 691 775 924 1193
wy)
Mean (SD) scar 156 127 129 133 137 145
size — LC (mz) (229) (17e) (180) (184) (192) (204)
Mean (SD) scar 82 47 52 55 62 74
size — LU (m?) (105) (401) (52) (56) (68) (96)
Fraction ground
eroded - LC (%) 0.122 0.252 0.242 0.232 0.211 0.122
Fraction ground ;. 0.041 0052 0061 0082 0.171

eroded - LU (%)
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by adding a penalty term that forces coefficients to be shrunk towards 0,
where p is the number of variables in the model:

P
7ln(L)+7\z|ﬁj|
=1

The penalty term is determined by the parameter A which controls
the sparsity of the estimator, i.e., the number of coefficients shrunk to 0.
The optimal tuning parameter is found by testing a range of values in a
cross-validation to reduce out-of-sample error. Lasso regression was
implemented in R using the caret (Kuhn, 2020) and glmnet (Friedman
et al.,, 2010) packages. The raster package was used for model pre-
dictions (Hijmans, 2021).

2.3.2. Sampling design and model evaluation

To test the consistency of variable selection, estimation of co-
efficients, and model performance across the six connectivity targets, we
repeatedly sampled from the landslide dataset to generate 100 balanced
datasets, whereby n = min {LC,LU} (Table 2). This process is repeated
for each of the six connectivity scenarios resulting in 600 models. Each
model was tuned to determine the optimal A value (range 0.001-0.1 by
0.001 increments) using k-fold cross validation (k = 10). Samples were
randomly partitioned into k folds, whereby k — 1 folds were used to train
the model and the remaining fold used to test the predictive ability of the
model. This was repeated until each of the ten folds was used for model
testing.

Since logistic regression results in predicted probabilities of class
association, a probability cut-off needs to be selected for binary classi-
fication and model validation. The selection of cut-off can be varied
depending on the purpose of the model which may influence the toler-
ance of certain true positive or false positive rates. For this reason, the
area under receiver operator curves (AUROC) is commonly used to es-
timate model performance as it is a threshold-independent performance
measure (Brenning, 2005). Receiver operator curves plot the true posi-
tive rate (sensitivity) against false positive rate (1 — specificity) across all
potential cut-offs (0-1). The AUROC is therefore a suitable measure to
summarize a model’s prediction performance for balanced samples as it
does not depend on the cut-off used to calculate classification accuracy
(Hosmer and Lemeshow, 2000). An AUROC score of 1 would mean the
model can perfectly discriminate between connected and unconnected
landslides in its predictions; a value of 0.5 corresponds to no discrimi-
natory power and is equal to that achieved by pure chance. A good
AUROC score is considered to lie between 0.8 and 0.9; an excellent score
> 0.9 (Safari et al., 2016; El Khouli et al., 2009).

Variable importance is assessed using inclusion rate and the size of
standardized coefficient estimate values. Based on results of k-fold cross-
validation, the model with the highest median AUROC was selected
from the 100 repetitions for each of the six targets and used to quantify
model fit and prediction skill. Model fit was estimated by quantifying
AUROC and maximum accuracy using predictions on the entire unbal-
anced dataset of 2002 landslide scars. Maximum accuracy uses the
probability threshold (= cut-off) that renders a binary classification with
the highest accuracy. Given that the datasets are unbalanced across all
six targets (Table 2), the optimal cut-off can deviate from 0.5. The
predictive skill was quantified through AUROC for each of the ten folds
using cross-validation and evaluated using boxplots.

Generating accurate predictions of landslide size is an active research
field — both in the domain of physical-process-based modelling (e.g.,
Bellugi et al., 2015a, 2015b) and statistical modelling (Lombardo et al.,
2021). Moreover, coalescing landslides were hypothesized to be an
important determinant of landslide connectivity and were therefore
investigated by inclusion of the total area of all scars contributing to a
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given landslide deposit (SumScAr). However, given the challenges
associated with forecasting landslide size, location, and density, we
investigate how well morphometric variables can predict connectivity
without knowledge of the size of mobilised source material. The scar size
variables are thus removed to both test the sensitivity of the models to
the size of mobilised source material and investigate the extent to which
morphometric variables can predict connectivity without prior knowl-
edge of scar size or density. We refer to the two model runs as “scar-size
models” and “morphometric models”. Spatial predictions of connectiv-
ity (Section 2.4) for the land management scenarios are based on the
morphometric model which includes only topographic effects.
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2.4. Land management scenario modelling

2.4.1. Landslide susceptibility

We followed a modular approach to couple potential source areas
through landslide susceptibility and sediment delivery through con-
nectivity models (Cislaghi and Bischetti, 2019). We use the landslide
susceptibility model developed by Spiekermann et al. (2022), which is
based on a landslide inventory of approximately 43,000 scars that were
triggered between 2005 and 2009. Landslide scars were mapped in the
Wairarapa pastoral hill country overlapping the study area (Fig. 3).
Predictor variables include slope gradient, aspect, lithology, and tree
influence models on slope stability (TIMSS) that represent the influence
of individual trees for four different vegetation types). TIMSS were

Fig. 3. Location of study area of the 1977 landslide inventory used for the connectivity model, the extended study area of the 2005-09 landslide inventory used by
the landslide susceptibility model, and the location of 50 farms selected for the land management scenarios.
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developed for different tree types based on an empirical relationship
between distance from tree and reduction in soil surface eroded. The
models are spatial representations of this relationship (1-m pixel),
following a sigmoidal shape until reaching an asymptotic value denoting
the distance at which the tree has no observable influence on slope
stability (Spiekermann et al., 2021, 2022). TIMSS are normalized to 0-1
but can exceed values of 1 due to the additive contributions from mul-
tiple trees. TIMSS are produced for the dominant tree types in the study
area, which include eucalyptus, kanuka, poplar/willow and coniferous
tree species. Binary logistic regression was used to develop the suscep-
tibility model and model performance using k-fold cross-validation was
excellent (AUROC of 0.95).

2.4.2. Coupling landslide connectivity and susceptibility

We integrated predictions of landslide connectivity and susceptibil-
ity using a modular approach. First, spatial predictions were reclassified
into three classes, “Low”, “Medium”, and “High”. Class thresholds were
determined by ranking landslide scars in decreasing order by their
probability values. The probability values associated with the 5th and
15th percentiles were then selected. For the landslide susceptibility
classification (Spiekermann et al., 2022), these values correspond to
0.32 and 0.72, which means that 80% of landslide scar points had
probability values >0.72, 15% had values between 0.32 and 0.72 and
the remaining 5% had probability values <0.32 (Spiekermann et al.,
2022).

The same procedure was used for the predicted probabilities of
landslide connectivity using the connected landslide scars and ranking
these in descending order by their probability values. Similarly, the high
connectivity class can be interpreted as being the zone where 80% of
connected landslides were triggered, which we refer to as the connec-
tivity rate. An intersection of the two reclassified spatial predictions
resulted in a matrix of nine classes describing both the likelihood of
landsliding to occur in future and the potential for sediment to be
delivered to the respective target.

Landslide connectivity ratios (LCR) were computed for each of the
connectivity classes (i = 3) for the six morphometric models based on
the number of landslides connecting (LG;) to each jth target (j = 6) of the
total number of landslides in the inventory (Ly). The class-specific
connectivity rate (CR;) is 0.8 for the high connectivity class, 0.15 for
medium, and 0.05 for the low class:

LG
LCR; = 2 x CR;
N

SDRs were calculated for each connectivity class i in a similar way
based on the volume of connected scars (LCVj) relative to total landslide
scar volume (Ly), for the class-specific proportion of the connected scar
volume (that differs with target j) (CP;). For example, for j = Streams,
0.77 of the volume of material from connected scars (LCV;j) was sourced
from the high class, 0.19 from the medium class and 0.04 from the low
class. The target-specific delivery rate (DR;: 0.5 for Streams, 0.45 for
TWI-95, etc.; Section 2.2.2) must also be considered, as follows:

LCV,
SDR;; =~

x CPjj x DR;
v

These SDRs are used to calculate class-specific event sediment yields
(ESYy; t/km?/yr) for each of the jth targets (j = 6) as follows:

SDR; X LCY;

ij

ESY; =

As mentioned in Section 2.2.2, we here assume soil bulk density p is
1.4 t m3, Ajj refers to the area occupied by class i using modelled
predictions of landslide connectivity based on the jth target. The total
event sediment yield is the sum of the delivered class-specific loads
across the study area divided by the total mapped aera A=7 km?2.
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2.4.3. Land management scenarios

To quantify the reduction in sediment delivery from shallow land-
slides compared to a pasture-only baseline (Sp), we developed land
management scenarios to estimate the expected reductions under the
following conditions: 1) actual woody vegetation as at 2013 (WV), 2)
targeted mitigation to slopes with high landslide susceptibility and high
potential for sediment delivery (S;), and 3) complete tree cover using a
15 x 15 m grid of poplar trees (S3). Under these scenarios, the layout
and/or density of trees changes, which directly impacts on the likeli-
hood of landslide occurrence, whereas predictions of connectivity are
static due to the dependence on morphometric determinants only. The
baseline is represented by a pasture-only scenario, which is achieved by
setting the TIMSS variables to 0 in the landslide susceptibility model.
This baseline scenario thus corresponds to the landslide susceptibility in
1977 - a landscape exhibiting a very sparse woody vegetation cover (see
study area description in Section 2.1). Scenarios 1 and 2 are constructed
using the poplar/willow TIMSS based on a regular grid of points rep-
resenting tree locations at 15 m spacings. Values of the TIMSS model are
applied as a function of distance (1-m radial increments), ranging from 1
at the tree location to 0.06 at a radius of 20 m from the simulated tree
(Spiekermann et al., 2021). The resulting raster grid at 1-m spatial
resolution accounts for the additive effect of the nearest four trees at any
given point. Scenario 1 applies this grid across the entire farm, whereas
for Scenario 2 the grid is only applied to slopes classified as both highly
susceptible and with high landslide connectivity, which we refer to as
targeted mitigation zones.

Predictions are made for 50 farms (>300 ha) in the Wairarapa hill
country (Fig. 3) to quantify the reductions in sediment delivery from
shallow landslides under the three scenarios using the buffered stream
network (Streams) as connectivity target. Reductions in landslide
erosion and sediment delivery are based on changes to the distribution
of landslide susceptibility classes (CC, %) for each farm f:

(Sx - S())

CCy = ——F—*100
! So

where S, are the proportions of the nine susceptibility/connectivity
classes of scenarios S; and Sy, and Sy the baseline. We assume that future
landsliding will follow the same pattern as in the past, such that the
majority (80%) of landslides will occur in the high susceptibility zone,
and so forth. Therefore, a reduction in the area occupied by the high
susceptibility zone equates to a reduction in future landslide erosion and
sediment delivery. The reduction in sediment delivery (SDy.q) considers
the rate (based on counts) of landsliding LR; and connectivity CR; in each
of the classes i = {0.8,0.15,0.05}:

SD,.; = CCq X LR; X CR;

Based on the size of the farm, and the mitigation zones associated
with S; and Sy, we calculate the number of poplar trees required to effect
the modelled change. We use an average cost of $33 per plant, which is
an estimate from the Greater Wellington Regional Council based on 3-m
planting material, 1.7-m Dynex protection sleeve, labour and helicopter
delivery (D. Boone, personal communication, November 2, 2021). We
quantify the cost-effectiveness of targeted erosion control and discuss
the implications for land management.

3. Results
3.1. Landslide connectivity models with scar size variables

The variable inclusion rate (%; Fig. 4a) and coefficient estimates
(median; Fig. 4b) from the lasso regression model for each of the six
targets suggest that the scar size variables (ScarArea, SumScAr), which
represent the volume of mobilised source material, are the most
important factors that determine landslide connectivity. These variables
were selected in 591 of the 600 models and the effect sizes were also the
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Fig. 4. Insert a): Heat-map displaying the inclusion rate of variables for all 6 connectivity targets including the scar size variables. The numbers indicate how often
variables were selected for the models out of 100 estimates. Note that the sum of scar area is the only variable included consistently across all connectivity targets.
Darker colours show variables selected more frequently. Grey boxes with a dash indicate which variables were never selected for the models. Insert b): Heat-map
displaying estimates of coefficients (median of non-zero estimates) for all six connectivity-targets. Grey boxes are equivalent to coefficients of zero and were

never selected for the models.

greatest. The results presented here further show that besides the size of
individual landslide scars (ScarArea), the coalescing of multiple land-
slides (SumScAr) in highly dissected hilly terrain is also an important
determinant of sediment connectivity (Fig. 4). There is a notable dif-
ference in the coefficient estimates of scar size variables with respect to
connectivity target. For Streams, TWI-p.95 and TWI-p.90, which repre-
sent the targets at greater distance from slopes, the individual scar size
(m?) was not as important a factor in determining connectivity as the
sum of all scars (m?) contributing to a coalescing landslide deposit; and
vice versa for the remaining three connectivity targets. This indicates
that when multiple scars contribute mobilised sediment to a common
landslide deposit, transportation and delivery of sediment is enhanced
and can be deposited at greater distance from source. While there is an
overall significant difference between individual scar sizes of connected
and unconnected landslides, the difference is accentuated for TWI-p.80 —
TWI-p.75 (Table 2). Where Streams are set as the connectivity target, the
average SumScAr (m?) is almost three times greater for connected
landslides (952 m?) compared to unconnected landslides (330 m?). On
average, 6.3 individual scars contribute material to a coalescing land-
slide deposit compared with 2.2 for unconnected. This indicates that
accounting only for the individual landslide scar size can result in un-
derestimation of the runout distance given that landslide derived ma-
terial from multiple sources can contribute to the transport of debris
downslope.

Besides landslide scar size, distance is an important determinant of
connectivity. Both DisOvrind and VDis had high inclusion rates and co-
efficient estimates — most notably for the Streams target, where DisOvlrnd
was more important than VDis with a median coefficient of —1.31. Here,
connectivity was found to be greater on north-facing slopes. Also note-
worthy is the inverse relationship to SlopeSH, which may indicate higher
connectivity of landslides occurring at mid-slope — where greater prox-
imity to the stream network was more important than vertical drop.
Other morphometric variables, such as TWI, Slope, GradientDif, TWI and
TRI, were frequently shrunk to 0 and rarely included for the five TWI-
based targets. Furthermore, while other morphometric variables had
higher inclusion rates (TPI, Gradient), they were less important given

their low median coefficient estimates. The full distribution of coeffi-
cient estimates across the 100 models as well as the estimates of the best
performing model are shown in Fig. A1 (Supplementary material).

Model performance of the 100 repetitions using 10-fold cross-
validations was very good for the scar-size models, and generally
decreased with increasing size of the connectivity target, from a median
AUROC of 0.87 for Streams to 0.81 for TWI-p.75 (Fig. 5a). This means the
models were best at classifying landslides as connected or unconnected
when the 5 m buffered stream network was set as the connectivity
target. It may reflect the importance of the combined scar size (SumScAr)
in determining connectivity to streams and the lack of connectivity of
individual scars. While only 150 of 571 landslides (26%) with 1:1 scar-
desposit ratio connected, 396 of 985 (40%) with converging landslide
deposits connected to target.

Model performance was further evaluated for the best of the 100
models considering both model fit and predictive skill. Model fit was
excellent across all six scar-size models, with AUROCs ranging between
0.81 and 0.88, which corresponds to a maximum accuracy of 81.6%
(Streams) and 75.7% (TWI-p.80; Fig. 6). Predictive skill is shown in the
boxplots in Fig. 6. While AUROC scores are generally high, a small
number of train-test iterations resulted in low AUROC scores causing
large variation in predictive skill. TWI-p.80, TWI-p.90 and TWI-p.95
show the greatest variation in AUC, which points to greater uncertainty
with these models. Yet in all but 4 of the 60 train-test iterations, cross-
validation results across all six scar-size connectivity models had
scores >0.75, which suggests these models can predict sediment de-
livery with a fair degree of certainty (Safari et al., 2016).

Variation in coefficient estimates is another indication for robustness
in model fit, which was greatest for the scar size variables, as well as
DisOvrlnd and VDis (Fig. A2) However, these are the variables with the
highest inclusion rate, which likely impacts on the variability of coef-
ficient estimates. Along with the scar size variables, these two distance
variables were the most important in terms of effect size. TPI had both a
high inclusion rate in the TWI-based models and low variability in the
estimates of effect size. The red dots in Figs. A2 and A3 signify the co-
efficient values used in the best-ranked models used for spatial
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Fig. 5. Model performance (AUROC) by a) scar-size connectivity models and b) morphometric connectivity models for each of the targets. Boxplots include 100
model repetitions, each with 10-fold cross-validation. Specifically, the box indicates the interquartile range (IQR) around the median value, whiskers indicate the

minimum and maximum values.

predictions.

3.2. Morphometric landslide connectivity models

The morphometric landslide connectivity models isolate the role of
local topography in determining sediment connectivity. The result of
removing the two scar size variables (ScarArea, SumScAr) promotes the
importance of all fourteen morphometric variables included in the
models. The inclusion rate is overall high, with Northernness, TPI,
Gradient, VDis, DisOvrind, and VRM most often selected across all six
targets (Fig. 7a). TWI, Slope, GradientDif, and LogFA were included less
often and when included had small coefficient estimates. In terms of
effect size, VDis, DisOvrind, Northernness and Gradient were the most
important variables in determining connectivity (Fig. 7b).

However, the removal of scar size variables comes at a cost in terms
of model performance (Fig. 5b), which is to be expected given the
importance of these variables in the scar-size models. Across the 100
repetitions, the Streams connectivity model performed best, with a me-
dian AUROC of 0.75. The TWI-based models performed less well, with
median AUROC ranging between 0.67 and 0.69. Of the 100 repetitions,
the best-performing Streams connectivity model had a model fit with an
AUROC of 0.76 and accuracy of 75.7% (Fig. 8). Of the six models, the
TWI-p.75 connectivity model reveals the worst model fit with an AUROC
of 0.67. The remaining four TWI connectivity models have an AUROC of
approximately 0.70. In terms of predictive skill, the Streams connectivity
model outperforms the five TWI models with a median AUROC of 0.77
from 10-fold cross-validation. The range in AUROC from 0.67 to 0.84
suggests potential for both good and poor predictions. Of the TWI con-
nectivity models, the TWI-p.80 model shows greatest predictive skill
with a median AUROC of 0.72. However, three of ten folds tested poorly
(<0.66), which indicates high model uncertainty for predictions of
connectivity.

As with the scar-size connectivity models, the greatest variation in
effect size is found with DisOvrind and VDis (Fig. A3). The least variation
is found in the morphological TWI-p.90 connectivity model. However,
this is explained by the well-balanced dataset of connected to uncon-
nected landslides (Table 2), which means resampling from the uncon-
nected would result in very similar datasets across the 100 model runs
compared to the other five targets used. This approach is still meaningful
in that it is much like a repeated cross-validation (100 x 10-fold CV).
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DisOvrind is the most important variable for predicting connectivity to
Streams and, while still important for the TWI-models, its effect is less
pronounced. As with the scar-size connectivity models, north-facing
slopes are generally more likely to connect to water ways than south-
facing slope. This may be due to topographic differences and variation
in soil properties that influence properties such as clay content.

3.3. Quantifying reduction of sediment delivery at farm scale

The spatial predictions of landslide connectivity were reclassified
into three classes using probability thresholds. These were obtained by
ranking all connected scars (Table 2) in descending order and extracting
the probability values at the 80th and 95th percentiles. Thus, 80% of
scars connecting to streams have probability values >0.42 and 95% >
0.25. The probability values were reclassified into three classes
describing the likelihood of sediment delivery using these thresholds.
The “high” connectivity class represents the area where 80% of con-
nected scars are located; the “moderate” is representative of terrain
where 15% of all connected scars were triggered; and finally, the “low”
class where the remaining 5% of all connected scars were triggered
(Table 3).

Increases in model accuracy increases the refinement of spatial
predictions. This has implications from an erosion and sediment miti-
gation perspective. A connectivity model with poor performance may
have large uncertainties in spatial predictions, which reflects in the
difficulty to classify units as potentially connected/ unconnected. This in
turn increases the proportion of land that requires biological mitigation
due to the uncertainty.

A landslide susceptibility or connectivity model with greater accu-
racy can classify spatial units as stable/unstable or connected/uncon-
nected with much greater certainty. This in turn enables more precise
targeting of erosion and sediment mitigation. Observable differences in
the spatial predictions of landslide connectivity predictions across the
six different morphometric models are thus both functions of varying
target definition and inherent model uncertainties (Fig. 9).

Hillslope-channel coupling of landslides is largely dependent on the
run-out distance of landslide deposits and the proximity to the connec-
tivity target. The spatial definition of the connectivity target determines
the distance landslide-derived material must be transported to enter the
channel network. Therefore, the landslide connectivity ratio (LCR), i.e.,
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Fig. 6. ROC plots for best of 100 models including scar size variables based on six different connectivity targets. The grey dashed lines are ROC-curves based on
validation using 10-fold CV. The red dashed line is the ROC curve based on model predictions of entire unbalanced dataset (2002 scars). Maximum accuracy is
calculated using the cut-off that renders the highest accuracy for the entire dataset. Boxplots show the corresponding AUROC values: the box indicates the IQR,
whiskers show the minimum and maximum values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

the proportion of connected landslide scars, is lowest for the 5 m buff-
ered streams (0.27), and highest for the TWI-p.75 zone (0.69; Table 3).
Since the size of connected landslides are on average larger than un-
connected scars (Table 2), the SDR does not equal the LCR (Table 3).
Further, we assume the proportion of mobilised sediment retained on
the hillslope increases for each of the successive connectivity targets.
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Estimated SDRs ranges from 0.21 for the Streams connectivity target,
increasing to 0.29 for the TWI-p.90 target before dropping back to 0.21
for the TWI-p.75 target. Assuming highly saturated soils enabled surface
runoff to continue during and post storm event, sediment delivery was
also 21% for the TWI-p.75 scenario. The highest sediment delivery ratio
of 0.29 was found for the TWI-p.90 scenario.
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Fig. 7. Insert a): Heat-map displaying the inclusion rate of variables for all 6 connectivity targets excluding the scar size variables. The numbers indicate how often
variables were selected for the models out of 100 estimates. Note that the exclusion of scar size variables increases inclusion rate of morphometric variables. Darker
colours show variables selected more frequently. Grey box with a dash indicates the variable was never selected for the models. Insert b): Heat-map displaying
estimates of coefficients (median of non-zero estimates) for all six connectivity-targets. The grey box is equivalent to a coefficient of zero and was never selected for

the models.

Assuming an average scar depth of 1 m and soil with bulk density of
1.4 (Crozier, 1996), the equivalent sediment yield for the 1977 rainfall
event was 3548 t/km? for the Streams connectivity target and 7564 t/
km? using the TWI-p.75 connectivity scenario (Table 3). The resulting
sediment yield is much greater despite the delivery ratio not changing
(0.21 for both Streams and TWI-p.75), likely reflecting the larger pro-
portion of landslides connecting to the connectivity target. However, at
9033 t/km?, the highest sediment yield is found for the TWI-p.85 sce-
nario. The results suggest sediment yield is a function of the landslide
connectivity ratio and the capacity of sediment to be entrained when
mobilised material is not delivered directly to the channel network.

3.4. Land management scenario modelling

Scenario modelling across 50 farms (with a median farm size of 608
ha) shows that, under the treeless baseline scenario, only 6.5% (2400
ha) of the total area is both highly susceptible to shallow landsliding and
has high potential for sediment delivery to the stream network
(Fig. 10a). However, due to the actual tree cover (WV), this class now
represents just 4.7% of the total area (Fig. 10b). The change in class
distribution from a pasture-only scenario (Fig. 11a) to that of 2013
(Fig. 11b) has led to an estimated reduction in sediment delivery of
23.8% across the 50 farms (Table 4). Targeted mitigation of the 6.5% of
highly susceptible and connected land using a 15 x 15 m grid of poplars
(Fig. 11c, e) has potential to reduce sediment delivery by 33.6%
compared with the baseline scenario. The maximum reduction in sedi-
ment delivery using the same 15 m-spaced trees covering all farmland is
56.1%. Under these scenarios, the sediment yield for the storm event of
1977 would have been reduced from 3548 t/km? (equivalent to the
pasture-only scenario Sp) to 2703 t/km? due to actual vegetation (WV),
2356 t/km? for S (targeted) and 1557 t/km? for So (maximum; Table 3).
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4. Discussion
4.1. Sediment delivery by landslides

Empirical investigation of runout behaviour, mobility and connec-
tivity of shallow landslides typically includes a quantification of the
source material deposited into streams (i.e., the sediment-delivery ratio -
SDR). SDRs of shallow landslides can vary significantly and are depen-
dent on soil mass, topography (e.g., slope geometry, surface roughness),
soil type (e.g., clay content, saturated water content that produces liquid
behaviour in soils) and available zone of accumulation prior to entering
a water course (Bathurst et al., 1997; Crozier, 1996; Cislaghi and Bis-
chetti, 2019; Cavalli et al., 2013; Bessette-Kirton et al., 2020). Estimates
for sediment delivery ratios can be used to inform process-specific
contributions to long-term (e.g., Dymond et al., 2016) or event-scale
sediment budgets (e.g., Page et al., 1994).

Reid and Page (2002) investigated connectivity of landslide deposits
to streams in the Waipaoa catchment (East Coast of North Island, NZ)
and found 65% of landslides connected to streams, with an overall
sediment delivery ratio of 0.45. In contrast, Jones and Preston (2012)
estimated a sediment delivery ratio ranging from 0.12 to 0.28 in the
same catchment. Furthermore, through field measurements, Preston
(2008) quantified SDRs ranging between 0.23 and 0.28. These estimates
by Jones and Preston (2012) and Preston (2008) are similar to our
findings despite the different geomorphological setting (SDR 0.21;
Table 3). Empirical investigation during landslide-triggering events and
process-based modelling could help alleviate the current paucity of
knowledge related to transport capacity of sediment following landslide
initiation. In this regard, the timing of landsliding with respect to storm
duration is an important consideration in terms of transport capacity
during the event (Preston, 2008). The scenarios using TWI-based con-
nectivity targets aim to address this knowledge gap by quantifying SDRs
based on assumptions of increased delivery and reworking of the
deposited mass during the rainfall event. However, these TWI-based
connectivity targets can also be used to characterize potential in-
creases in SDR through surface run-off erosion post-event (Xiong et al.,
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Fig. 8. ROC plots for best of 100 models including only morphometric variables based on six different connectivity targets. The grey dashed lines are ROC-curves
based on validation using 10-fold CV. The red dashed line is the ROC curve based on model predictions of entire unbalanced dataset (2002 scars). Maximum accuracy
is calculated using the cut-off that renders the highest accuracy for the entire dataset. Boxplots show the corresponding AUROC values: the box indicates the IQR,
whiskers show the minimum and maximum values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

2022). Under these assumptions, our results show the SDR could
potentially increase to 0.43 (Table 3). However, field measurements or
use of high-resolution repeat LiDAR are required to corroborate these
findings (Scheip and Wegmann, 2022).

The SDRs equate to an event sediment yield of between 3548 t km 2
and 9033 t km 2 (Table 3). To put this into context, the study area drains

13

into the Taueru River, which - based on sediment gauging data — has an
average annual sediment yield of 358 t km~2 (Hicks et al., 2019).
However, this estimate of sediment yield for the Taueru is based on a
sediment monitoring period from May 1968 — May 1981 (at Te Weraiti).
It therefore includes the effect of the 1977 storm event and subsequent
contribution of sediment from landslides, which can impact on sediment



R.I. Spiekermann et al.

Ecological Engineering 180 (2022) 106676

Table 3
Landslide connectivity ratios, landslide delivery ratios, and event sediment yields for the three connectivity classes and six targets.
Connectivity class Streams TWI-p.75 TWI-p.80 TWI-p.85 TWI-p.90 TWI-p.95
Low 0.01 0.03 0.03 0.03 0.03 0.02
Landslide connectivity ratio Medium 0.04 0.10 0.10 0.09 0.08 0.06
¥ High 0.22 0.55 0.52 0.49 0.43 0.32
Total 0.27 0.69 0.65 0.61 0.54 0.40
Low 0.01 0.01 0.01 0.02 0.02 0.01
Sediment delivery ratio Medium 0.04 0.03 0.03 0.05 0.06 0.04
very High 0.16 0.18 0.20 0.21 0.21 0.21
Total 0.21 0.21 0.25 0.28 0.29 0.26
Low 383 1299 1711 2237 2298 1068
Medium 2771 3605 4412 6522 6799 3742
E i ield(t/km?
vent sediment yield(t/km") High 6564 13,527 13,620 13,885 12,568 8523
Total 3548 7564 8366 9033 8545 6027

loads for several years (Basher et al., 2011). Even so, by comparing the
event sediment yields (Table 3) with average annual estimates, it is
evident that shallow landslides are the dominant source of sediment in
the Taueru Catchment. Multi-temporal mapping in the same study area
confirms that landsliding is a regular occurrence in these landscapes:
Over the course of 128 years (1882-2010), the cumulative scar area
comprised 22% of the planform area of the study site (60 ha), which
equates to 2% of the land surface per decade (De Rose, 2013).

The relative importance of shallow landslides to long-term sediment
loads can differ significantly — even within the same catchment (Hicks
et al., 2000). Shallow landsliding was found to be the dominant erosion
process in the Te Arai sub-catchment (Hicks et al., 2000), which com-
prises 23% of the Waipaoa Catchment. However, for the Waipaoa
Catchment as a whole, landslides contribute only about 15 + 5% of the
long-term suspended sediment load in the Waipaoa River (Reid and
Page, 2002) - increasing to ~48% during extreme events (Page et al.,
1999). Other erosion processes in other parts of the catchment are more
significant sediment sources (Hicks et al., 2000; Reid and Page, 2002),
particularly the extensive gully systems (Marden et al., 2018), but also
streambank erosion (De Rose and Basher, 2011). Landslides were also
determined to be the most important contributor to the sediment load of
the Manawatu catchment (Dymond et al., 2016). However, such esti-
mates are very sensitive to the universal SDR used (0.50), which is
known to vary depending on morphological setting (Dickinson and Wall,
1977). Indeed, Burns (1979) suggested that each potential sediment
source has unique delivery potential, which can be quantified in terms of
probability with respect to the stream and catchment divide. Our
approach overcomes these limitations by having developed statistical
connectivity models using a suite of morphometric variables to predict
the likelihood of a landslide delivering sediment to a predefined sink and
can therefore be considered an integration of functional and structural
connectivity (Najafi et al., 2021a). Yet, how the predictions translate
into SDRs requires further research but could be based on an empirical
relationship between probability values of landslide connectivity and
observed estimates of SDR. While the model is limited by the landslide
inventory which characterises a single event for a 7-km? area, future
development will also aim to increase the landslide scar-deposit in-
ventory so that soil characteristics (e.g., texture) can be included in the
model. In addition, it would be important to determine sensitivity of
predicted reductions in landslide susceptibility and connectivity to the
choice of statistical model (e.g., a generalised additive model or a
random forest model).

The scenarios presented here are based on past observations of both
landslide occurrence from the years 2005-2010 and sediment delivery
from the 1977 event. Predicted rates of sediment delivery and re-
ductions associated with actual tree cover and mitigation scenarios
compared to a pasture baseline assume the mechanisms of failure and
delivery will be similar in future. Validation of the landslide suscepti-
bility model shows a shift in terms of probability distribution of the 1977
landslide inventory compared with the larger, more recent landslide
inventory from 2005 to 2009 used to generate the susceptibility model
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(Fig. 12). Only 70.5% of landslides triggered in 1977 are located in the
high susceptible class. The high class used for scenario modelling is
defined by a probability threshold of 0.72 that represents the 80th
percentile of landslide scars ranked in descending order in the landslide
inventory of 2005-2009. By extracting the landslide susceptibility
values at the scar locations from 1977, the equivalent 80th percentile
probability threshold of 1977 landslide scars is 0.60. The results of the
validation suggest that historic landslides were occurring more
frequently on what is considered “moderately susceptible terrain” by a
present-day susceptibility model. This may reflect differences in the
triggering mechanism, that is, long-duration (low-intensity) rainfall
with high antecedent conditions in 1977 versus the high intensity
rainfall events of 2005-2009 (Crozier et al., 1980; Spiekermann et al.,
2021). However, it may also be an indication of terrain resistance
(Crozier and Preston, 1999; Jones and Preston, 2012). The location of
more recent failures likely reflects the erosional history of the landscape
where undisturbed regolith close to spurs and crests has little lateral
support due to previous failures lower on the slope (Preston, 2008).
Topographic controls on surface and sub-surface flow and water content
not only impact landslide occurrence, but also have implications for the
behaviour of debris runout. As the landslide mass proceeds downslope,
its mobility will increase due to greater surface water flows resulting
from convergence in flow paths and larger drainage area. This has the
effect of increasing the liquid fraction of the landslide deposit, which
reduces internal friction, resulting in greater run-out down-slope (Scheip
and Wegmann, 2022). If, because of terrain event resistance (Jones and
Preston, 2012), landslide failures are occurring increasingly on steeper
upper slopes, the likelihood of fluidised flow may be reduced due to
lower soil water content in these areas of initiation. In addition, results
show the importance of landslide density in determining sediment de-
livery, and in this regard are similar to findings elsewhere (e.g., Bessette-
Kirton et al., 2020). Landslide deposits formed from multiple source
areas that coalesce were more likely to deliver to the stream network
than single source landslide deposits. Further research is needed to
examine the relationship between i) landslide-triggering rainfall
magnitude, ii) topographic controls on landslide initiation, iii) evolution
of terrain resistance, and iv) type of debris runout, i.e., fluidised with
internal friction removed, intact sliding of a landslide mass or incipient
failure.

4.2. Smarter targeting of erosion and sediment mitigation

Scenario modelling results provide clear evidence that the cost-
effectiveness of targeted mitigation S; is greatly increased compared
to a non-targeted approach. A targeted approach involves prioritizing
mitigation on slopes with high landslide susceptibility and high poten-
tial for sediment delivery. On average, just 3 trees/ha of farm are
required to mitigate the 2400 ha of highly susceptible and connected
terrain across the 50 farms. The median area of this zone requiring
mitigation is 36 ha across the 50 farms, which would require an in-
vestment of approximately $53,000 to achieve the median reduction of
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Fig. 9. a) For a sample area (1800 m by 1500 m), probability values of connectivity and b) reclassified connectivity into three classes expressing the likelihood of
sediment delivery according to the probability distribution of connected scars (see Fig. A4). Projection: New Zealand Transverse Mercator 2000 (NZTM2000).
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Fig. 10. Landslide susceptibility and connectivity distribution of combined farms (total area 36,500 ha).

33.6%. Thus, the average investment required on a per hectare basis
amounts to $2.82 per 1% reduction in sediment delivery from shallow
landslides. This compares to So, which represents a random approach to
targeting, i.e., mitigation is implemented proportional to the area
occupied by the landslide susceptibility/connectivity classes. The
average investment to achieve a 1% reduction in sediment delivery is
thus substantially greater ($26.2/ha).

For example, if a 10% reduction is desired (compared to baseline) for
a 500-ha farm, the investment would amount to $14,100 — assuming all
trees survive. To achieve a 10% reduction on the same farm using a non-
targeted approach, an investment of approximately $131,000 would be
required. There is thus an order of magnitude difference in terms of cost-
effectiveness between a targeted versus non-targeted approach. How-
ever, it is important to consider the variation in terms of reduction in
sediment delivery achieved and the cost of doing so across the 50 farms
(Fig. 13). The mean cost for a 1% reduction is $2.82/ha for Scenario 1
(SD: $1.37; range: $0.21-$7.92); The mean for Scenario 2 is $26.20/ha
(SD: 3.69; range: $17.54 — $38.94).

Due to the actual tree cover in the Wairarapa hill country, sediment
delivery from shallow landsliding is 23.8% less, compared with a
pasture-only scenario. In fact, the importance of already existing vege-
tation is similar to what could be achieved using a targeted approach
(33.6% reduction). However, the estimated number of trees in the
landscape is substantially different. Approximately 34% of land across
the 50 properties have added protection due to the presence of trees.
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However, many of these trees are not providing a direct benefit in terms
of slope stability (e.g., when located on floodplains), but are likely
adding value to the farm enterprise elsewhere (e.g., through shelter
provision, additional income from honey, carbon, or forestry). In terms
of future erosion and sediment control works, the cost-effectiveness is
substantially increased by targeting highly susceptible and connected
slopes.

5. Conclusion and outlook

This study developed and tested statistical approaches to modelling
sediment mobility from shallow landslides by coupling slope stability
and sediment connectivity models. The method demonstrates a useful
integration of functional and structural connectivity. We have demon-
strated the development and application of the first morphometric
connectivity model to enable targeted mitigation of landslide-derived
sediment. The model has very limited data requirements: 1) an in-
ventory of landslide scars and deposits and 2) a high-resolution (LiDAR)
DEM. An important outcome of the lasso regression is the potential
consequence of over-reliance on individual landslide scar size as a pre-
dictor of connectivity. Without considering contributions of landslide-
derived material from multiple sources to the transport of delivery
downslope, the run-out distance is likely to be underestimated for
shallow landslides. This result speaks in favour of a morphometric model
given the difficulty in predicting the location, size, and density of future
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Fig. 11. Landslide susceptibility and connectivity maps under a) pasture, b) actual tree cover (2013), c) targeted mitigation to terrain shown in e), and d) full tree

cover using 15 x 15 m grid of poplar trees shown in e).

Table 4
Overall reduction in sediment delivery to streams across 50 farms (35,900 ha)
relative to baseline (S0).

Existing Scenario 1 Scenario 2
vegetation
Reduction (%) 23.8 33.6 56.1
Tree count 738,818 105,307 1,629,381
Area treated (ha) 12,480 2369 36,661
Farm-average trees/ha 20.2 2.9 44.4
Average cost for 1% reduction na 2.82 26.2

($/ha)
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shallow landslides. However, removal of scar size variables comes at a
cost in terms of model performance. For the Streams connectivity model,
the median AUROC was reduced from 0.88 to 0.75 across 100
repetitions.

To simulate the variation in sediment delivery based on a range in
storm magnitude, we defined six different sediment connectivity targets.
Sediment delivery ratios from the landslide triggering event of 1977
ranged between 0.21 and 0.29, depending on the definition of sink.
However, the connectivity scenarios show that sediment yields can
change significantly depending on the degree to which sediment
recruitment from lower slopes is possible during a storm event. When
accounting only for direct deposition into streams, the event sediment

Fig. 12. Validation of the landslide susceptibility model based
on historic landslides. White lines locate the probability
thresholds at the 80th and 95th percentiles in the count of
landslides ranked in descending order according to landslide
susceptibility values. Dotted lines show the cut-offs used to
classify landslide susceptibility into three classes of Low, Me-
dium, and High susceptibility according to the probability
distribution in the landslide inventory from 2005 to 2009
(Spiekermann et al., 2022).
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Fig. 13. Insert a). Modelled reduction in sediment delivery to the stream network (%) for actual woody vegetation (WV; 2013), targeted mitigation (S1) and
maximum possible with full tree cover (S2). Red strip charts correspond to the mean of sediment reductions (point) from 50 farms and 1 SD (line); Insert b). The farm-
average investment required on a per hectare basis to achieve a 1% reduction in sediment delivery. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

yield was estimated at 3548 t/km? (Table 3). However, when assuming
continued sediment recruitment at reduced rate by overland flow across
saturated soils as well as post-event reworking of deposited material, the
maximum sediment yield was estimated at 9033 t/km?. This estimate of
event sediment yield is approximately 2.5 times greater than estimates
only considering landslide deposits connecting to streams directly and
challenges previous assumptions related to sediment delivery ratios and
the importance of shallow landsliding for sediment budgets.

We selected 50 farms to quantify the reduction in sediment delivery
based on contrasting mitigation options: 1) targeting critical source
areas of sediment and 2) a non-targeted approach to tree planting. The
cost-effectiveness of these different mitigation options suggests there is
an order of magnitude difference between a targeted versus non-
targeted approach in terms of the ratio of investment to reduction in
sediment delivery achieved. An important outcome of the landslide
susceptibility and connectivity modelling is that in total only 6.5%
(2370 ha) of farmland is the potential source of approximately two-
thirds of landslide-derived sediment across the 50 farms (Fig. 11). Due
to existing vegetation, this area has already been reduced to 4.7% (1720
ha). Further reductions in future sediment delivery can be achieved by
increasing slope stability on these highly susceptible and connected
slopes through additional biological mitigation. For a farm of 500 ha, the
average cost to achieve a 10% reduction in landslide-derived sediment is
$14,100 for targeted mitigation and $131,000 for non-targeted
(Table 4). To achieve the maximum reduction possible for a targeted
approach to mitigation using a 15-m grid of poplar poles on the same
farm (500 ha), the cost is estimated as $47,000 for targeted mitigation
and $440,000 for non-targeted to achieve the same result of 33.6%
reduction in sediment delivery. However, further research is required to
test the feasibility of treatment across different landslide susceptibility
classes. Shallow landslides are more likely to occur on steep slopes
where establishment of biological controls (e.g., poplar poles) is more
challenging due to reduced soil moisture, exposure to wind gusts, and
shallower soils.

In terms of future research needs, increasing landslide scar-deposit
inventories across a range of environments could allow statistical con-
nectivity models to include soil characteristics (e.g., soil type, depth,
etc.). Furthermore, there is currently a lack of understanding regarding
the relationship between triggering mechanism, topographic controls,
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and terrain resistance (Jones and Preston, 2012) and debris run-out
behaviour of shallow landslides. Our results show that both scar size
and the density of landslide occurrence are very important as de-
terminants of sediment delivery since coalescing landslide deposits are
much more likely to deliver sediment, which is corroborated by related
research (e.g., Scheip and Wegmann, 2022). Therefore, future landslide
susceptibility models should provide predictions on the intensity of
landslides (Lombardo et al., 2018, 2020), their size (Lombardo et al.,
2021) and probability of landslide deposits coalescing. While the
morphometric connectivity model was developed to support land
management decisions and increase effectiveness of erosion and sedi-
ment mitigation, there is equally great potential to include the spatial
predictions of connectivity in sediment budget modelling at catchment
scale.
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