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We developed a landslide susceptibility model using binary logistic regression for silvopastoral landscapes,
which for the first time includes spatial distribution models for individual trees of different vegetation types.
Models were trained and tested using a landslide inventory consisting of 43,000 landslide scars mapped across
an 843 km2 area. Model performance was very good, with a median AUROC of 0.95 in the final model used for
predictions, which equates to an accuracy of 88.7% using a cut-off of 0.5. We investigate the effect of highly
skewed continuous tree variables on the maximum likelihood estimator by testing different sampling strategies
aimed at reducing positive skewness. With an adequate sample size, we found that highly skewed continuous
predictor variables do not result in an inflation of effect size.
Using two farms in the study area, we illustrate application of the landslide susceptibility model for quantifying
the reduction in shallow landslide erosion due to trees. Landslide erosion was reduced by 16.6% at Site 1 and
42.9% at Site 2 due to all existing vegetation. The effectiveness of individual trees on reducing landslide erosion
was shown to be less a function of species than that of targeting highly susceptible areas with adequate plant
densities. We found 80% of landslides are triggered in 12.1% and 7.3% of the area of Sites 1 (1700-ha) and 2
(462-ha), respectively, suggesting there is great potential for smarter targeting of erosion mitigation. The high-
resolution spatial information provided by the landslide susceptibility maps can be used by decision makers in
land management to support the development and targeting of erosion mitigation measures.
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1. Introduction

Accurately quantifying the effectiveness of trees for hillslope stabil-
ity remains a key challenge for erosion control research. Irrespective
of tree species, methods to quantify the effect of trees on landslide ero-
sion generally use 1) empirical- (e.g., Douglas et al., 2013), 2) physical-
(e.g., Schwarz et al., 2016), or 3) statistical-based approaches
(e.g., Reichenbach et al., 2014). Quantitative empirical studies have
demonstrated and/or modelled that widely spaced trees on hillslopes
reduce landslide erosion by 70–95% within 10 m of tree stems com-
pared with untreated control sites (Hawley and Dymond, 1988; Hicks,
1989a, 1989b, 1992; Thompson and Luckman, 1993; Phillips et al.,
2008; Douglas et al., 2009, 2013; McIvor et al., 2011, 2015). Yet, such
univariate methods do not account for variation in environmental fac-
tors and tree densities. Physical models can include root reinforcement
modelling to quantify increases in soil shear strength for a given slope
(e.g., Schwarz et al., 2012, 2016). Such approaches are well suited to
re Research, Palmerston North,

(R.I. Spiekermann).
assessing effectiveness of trees at the hillslope scale but are less practical
at regional scales due to the data requirements relating to the physical
parameters of the soil which can be highly variable is hilly or steep land-
scapes (Holcombe et al., 2012;Masi et al., 2021). For larger areas, simpli-
fied assumptionsmust bemade (Salvatici et al., 2018), which can result
in poorer performance of physical models compared with statistical
methods (e.g., Cervi et al., 2010). Therefore, both deterministic and
probabilistic approaches that integrate root reinforcement models in
slope stability calculations have largely hadhomogenous protection for-
ests as the object of their investigation (e.g., Cislaghi et al., 2017). Prob-
abilistic approaches deal with the variability inherent in input
parameters by considering the probability distributions. For example,
SlideforMap generates hypothetical landslides of varying sizes to com-
pute slope stability using semi-random samples over pre-defined
ranges for soil cohesion, internal friction angle and soil depth (van
Zadelhoff et al., 2021). A further novelty of SlideforMap is the inclusion
of root reinforcement based on individual tree detection with applica-
tion at landscape to regional scales. While integrating the influence of
individual trees in slope stability calculations has been held in the
domain of physical modelling, this study aims to develop a statistical
approach for assessing effectiveness of individual trees in silvopastoral
landscapes.
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https://doi.org/10.1016/j.geomorph.2021.107993
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Landslide susceptibility can be defined as the likelihood of future land-
slide occurrence for a given areal unit given local geo-environmental
attributes (Brabb, 1984). Statistical landslide susceptibility models do
not attempt to model the physical processes that control slope stability.
Rather, and in the absence of geotechnical soil data, statistical models
use readily available surrogate data and thus have less stringent data re-
quirements compared with physical models. A key input parameter that
influences the accuracy of statistical susceptibility models, especially for
evaluating the influence of single trees, is the quality of vegetation data.
In most existing statistical models, land use or land cover data (LULC)
are used to capture the varying effect of vegetation composition. These
data are frequently prepared through visual interpretation of aerial pho-
tography and are rarely available at the scale required to quantify the ef-
fect of individual trees (Reichenbach et al., 2018; Spiekermann et al.,
2021). Therefore, in hill country, where shallow landslide erosion is a
dominant geomorphic process (Smith et al., 2021), we address themeth-
odological and knowledge gap related to statistical modelling at land-
scape scale to quantify the reduction in landslide erosion due to
individual trees at landscape scales.

In this context of silvopastoral landscapes, previous studies have
been limited by scale (e.g., hillslope) or method (e.g., univariate analy-
ses). There is a need for spatially explicit modelling to assess the impact
of differing tree species and planting densities on landslide erosion
while accounting for varying environmental conditions, such as slope
Fig. 1. A: Location of study area in the lower North Island, New Zealand; B: Shallow landslide in
scar size (bin width= 10m2), including vertical lines of median (49m2) and mean (81m2); D
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gradient, lithology, or soil type. To enable such assessments, high reso-
lution vegetation data are a prerequisite. Automated processing of satel-
lite imagery and airborne LiDAR data is continually increasing the
spatial and temporal resolution of land cover products, creating oppor-
tunities tomap the location of individual trees in the landscape (Gómez
et al., 2016; Brandt et al., 2020; Weinstein et al., 2021). However, be-
yond mapping trees, the challenge for landslide susceptibility models
is the spatial representation of trees as predictor variables in the
model: Representing individual trees as points/pixels, mapping tree
canopies, or using an arbitrary radius to define an area of influence of
a tree fail to acknowledge the spatial variation in the distribution and
strength of roots as well as the hydrological interactions between
trees and soil. While root distribution models have been used for phys-
ical, process-based modelling, the cost of data collection is prohibitive
and not suited to landscapes with a diverse range of tree species. A so-
lution to this problem was recently proposed by Spiekermann et al.
(2021), whereby the average extent and spatial pattern of individual
trees on slope stability is inferred by considering the relationship be-
tween the location of trees and landslides. The recent availability of
the tree influence models (TIMSS) provides an opportunity to create
greatly improved landslide susceptibility models for silvopastoral land-
scapes. Thereby, the increase in slope stability due to individual trees
can be quantified, and, inversely, the reduction in landslide susceptibil-
ity and erosion. Accounting for the influence of individual trees has been
ventory 2005–2009 used to train landslide susceptibility models; C: Histogram of landslide
: Extent of black framewithin study area showing a sample of mapped shallow landslides.



Fig. 2. Susceptibility to landslide erosion is temporally dynamic, as exemplified by a small
areawithin site 1 (see Fig. 1 for location). High density of shallow landslides in 1977 led to
extensive space-planting of poplar, willow, and eucalyptus trees (2010).

Table 1
Stem counts and densities by tree type at Sites 1 and 2.

Site 1 Site 2

Tree type Count Percent Stems per ha Count Percent Stems per ha

Eucalyptus 708 9% 0.4 2247 16% 4.9
Kānuka 1900 25% 1.1 7797 57% 16.9
Conifer 352 5% 0.2 1048 8% 2.3
Poplar/Willow 4545 61% 2.7 2703 20% 5.9
Total 7506 100% 4.4 13,795 100% 29.9

R.I. Spiekermann, H.G. Smith, S. McColl et al. Geomorphology 396 (2022) 107993
a gap in the statistical landslide susceptibility and risk literature. In this
study, we address this gap by using high resolution data at landscape
scale to quantify the reduction in landslide erosion due to individual
trees while accounting for local environmental conditions.

Method development for landslide susceptibility modelling is a
comprehensive research field that most commonly focuses on generat-
ing suitable datasets (e.g., van Westen et al., 2008; Chang et al., 2019;
Smith et al., 2021), model development (e.g., Van Den Eeckhaut et al.,
2006; Hong et al., 2017; Huang and Zhao, 2018), sampling methods
(Heckmann et al., 2014; Conoscenti et al., 2016), model performance
and validation (e.g., Rossi et al., 2010; Petschko et al., 2014; Steger
et al., 2016a; Xiao et al., 2020), and uncertainty and error evaluation
(e.g., Steger et al., 2016b; Steger et al., 2017). All these research objec-
tives have the aim of obtaining reliable landslide susceptibility maps
to improve management decisions aimed at reducing landslide risk.
We address a knowledge gap related to the integration of individual
trees into landslide susceptibility models – specifically for silvopastoral
environments. This study is the first of its kind that aims to quantify the
reduction in susceptibility to shallow landslide erosion due to the influ-
ence of individual trees. We integrate the TIMSS (Spiekermann et al.,
2021) of four different tree types for statistical landslide susceptibility
assessments using binary logistic regression models. Furthermore, we
investigate whether including highly skewed, continuous TIMSS vari-
ables in logistic regression modelling has implications for estimation
of effect size. Following model development, two farms from the
Wairarapa region, New Zealand, are used to illustrate how the landslide
susceptibility model can be used to quantify effectiveness of trees for
landslide erosion control.

2. Data and methods

2.1. Study area

The study area is an 843 km2 area in theWairarapa in the south-east
of the North Island of New Zealand (Fig. 1). Most of the study area (92%)
is used for pastoral farming and is underlain by predominantly
Neogene-aged massive, poorly beddedmudstone and alternating sand-
stone and mudstone (Lee and Begg, 2002). Soils commonly have a
dense subsoil zone of lowpermeability formed in loess that is the failure
plane for many landslides (De Rose, 2012). A band of coquina limestone
forms the central and south-western part of the study area (Fig. 3 in
Spiekermann et al., 2021). The terrain has low to moderate relief
(<150m) that is intensely dissected, with narrow ridge and spur crests,
hillslopesmostly between 15° and35°, andnarrow valley floors. This to-
pography is locally referred to as “hill country”. Significant areas of col-
luvium (landslide debris) have accumulated along the base of many
hillslopes, and in mid- and upper-slope hollows. Mean annual rainfall
is 1100 mm, characterised by winter maxima and summer droughts.
Long duration, low intensity rainfall is typical with low daily rainfall to-
tals (De Rose, 2012). However, landslide-generating storms have oc-
curred frequently since climatic records began in the 1880s. Most of
these storms do not have particularly high storm or daily rainfall totals
(100–200 mm) but often occur when antecedent moisture conditions
are high (De Rose, 2012; Basher et al., 2018).

Two farms (Sites 1 and 2) were selected from within the study area
in the Wairarapa hill country to quantify the effectiveness of trees on
slope stability (Fig. 1). Both farms have a history of landslide and soil
erosion research activity (Lambert et al., 1984; De Rose, 2012; Douglas
et al., 2013; Basher et al., 2018; Spiekermann et al., 2021). Site 1 is a
1700-ha sheep and beef farm located east of Masterton in a region of
steep pastoral hill country. The original native vegetation was cleared
between 1860 and 1890 (Lambert et al., 1984). A major rainfall storm
event led to widespread landsliding in 1977 (Crozier et al., 1980;
Glade, 1998; De Rose, 2012; Fig. 2). Preventative measures were largely
non-existent before the event. Soil conservation works in the form of
space-planted poplar, willow, and eucalyptus trees began in the
3

1980s. While planting has been sustained since commencement, the
density of trees on hillslopes differs greatly across the farm, with some
hillslopes devoid of tree cover (Table 1). Site 1 is thus representative
of a “moderate” level of tree cover for New Zealand's pastoral hill coun-
try farms.

Site 2 is a 462-ha sheep and beef farm located at the upper catch-
ment of the Waikoukou Stream and has had a great deal of soil and
water conservation implemented since 1956. The main objectives of
these conservation works were to intensively plant slopes and gullies
prone to severe erosion using poplars, willows, and protected seedlings
of other species. According to farm plan documents (Wairarapa
Catchment Board, 1956), the early European land cover likely consisted
of light bush, kānuka, and fern, with heavier podocarp species in the
wider valleys. Several remnants of kānuka (naturally regenerated fol-
lowing initial clearance) remain distributed across the farm. Overall,
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there is a higher tree density (by species and in total) compared with
Site 1 (Table 1).

2.2. Landslide inventory

Shallow landslides are the most dominant mass movement process
in the study area. This is due to a high-energy geomorphic environment
that is predisposed to landslidingwith soft sedimentary rocks, steep and
highly dissected slopes, and frequent high-intensity rainfall events that
regularly trigger many thousands of shallow landslides (Crozier, 2018;
Smith et al., 2021). These favourable natural conditions for landslide
erosion are compounded by historic changes to land cover with the re-
moval of indigenous forest in the late 1800s to early 1900s for pastoral
farming (Glade, 2003). Shallow landslides are commonly small features
(50–100m2; Fig. 1) involving soil and regolith less than 1.5mdeepwith
longnarrow debris tails (Glade, 1998; Crozier, 1996; Basher, 2013; Betts
et al., 2017). The triggering mechanism is assumed to be rising pore
water pressure due to sustained rainfall reducing the internal friction
of soil particles until the gravitational forces ultimately overcome the
resistance of the soil.

The landslide inventory used in this study is described by
Spiekermann et al. (2021), whichwe refer to for description ofmapping
methodology. The shallow landslide dataset consists of 43,069 landslide
scars (Fig. 1) that were mapped in regional orthophotos from 2010
(RGB, 0.4 m GSD) and are used in this study to fit and test the landslide
susceptibility models. The landslides were triggered by several storms.
Two of the storm events, in March 2005 and July 2006, affected the en-
tire study area, with a median recorded rainfall of 175 mm (range:
130–382mm) and 204mm(range: 172–321mm) over 48 and 72 h, re-
spectively. Three further storms, in late July 2006 (149mm; 48 h), Octo-
ber 2006 (130 mm; 48 h), and June 2009 (197 mm; 24 h), were more
localised to the south. The median scar area is 49 m2 and the mean is
82.1 m2, which is consistent with findings of previous studies (De
Rose, 2012; Betts et al., 2017; Smith et al., 2021).

2.3. Predictor variables

To develop the statistical model of landslide susceptibility, key pre-
dictor variables of shallow landslide erosion were generated from
existing datasets. Selection of predictor variables was based on an un-
derstanding of the geomorphic process being assessed, i.e., all selected
factors have direct physical process relevance for slope stability. More-
over, since the objective is to investigate the effect of trees on landslide
susceptibility, we aimed to keep themodel simple by keeping the num-
ber of predictor variables to aminimum. Therefore,we include the topo-
graphic variables of slope gradient, aspect (northernness, easternness),
tree cover using the four TIMSS, and lithology (Table 2).

Slope gradient is the most influential environmental predictor vari-
able used in landslide susceptibility modelling (Carrara et al., 1991,
Table 2
Predictor variables used in landslide susceptibilitymodel [n.=numerical; c.= categorical
data]. For lithology, the percentage of study area and number of landslide scars is given for
each category.

Data Model inputs

Topography
[n.]

Slope gradient [°]; northernness (cosine transformation of slope
aspect), easternness (sine transformation of slope aspect).

TIMSS [n.] Tree influence models for following vegetation types: eucalyptus,
kānuka, conifer, poplar/willow.

Lithology
[c.]

Argillite – crushed [0.2%, 48]; Undifferentiated floodplain alluvium
[8.5%, 249]; Gravels [0.9%, 229]; Greywacke [1.9%, 178], Limestone
[9.9%, 1252]; Loess [28.7%, 6665]; Mudstone or fine siltstone –
banded [6.6%, 4204]; Mudstone or fine siltstone – jointed [19.8%,
15,204]; Mudstone or fine siltstone – massive [15.0%, 10,533];
Sandstone or coarse siltstone – banded [0.1%, 2]; Sandstone or
coarse siltstone – massive [8.3%, 4494]; Unconsolidated to
moderately consolidated clays [0.2%, 11].
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1995; Chung and Fabbri, 2003; Budimir et al., 2015; Reichenbach
et al., 2018) – particularly in combination with variables pertaining to
the mechanical properties of soil and lithology (Betts et al., 2017;
Reichenbach et al., 2018). The reason for its effective explanatory
power is directly related to the physics of massmovement. Slope gradi-
ent controls the stresses and resistance acting on a slope to maintain
stability (Wu and Sidle, 1995),with increasing shear stress and decreas-
ing resistance for higher slope gradients.

Slope aspect is frequently used as a predisposing factor in landslide
susceptibility assessments (e.g., Salter et al., 1983; van Westen et al.,
2008; Galli et al., 2008; Ruff and Czurda, 2008). It has been suggested
that contrasting microclimate between slopes of different aspect can
produce asymmetric valley morphology through control of slope
weathering and erosional and depositional processes (Burnett et al.,
2008). The direction of incoming weather events may also create a
‘shadow effect’, impacting some slopes more than others (Liu and
Shih, 2013). Crozier et al. (1980) undertook statistical analyses of the
distribution of landslides triggered in the winter of 1977 in the
Wairarapa and found a strong preference for northerly aspects (61.6%
of slips on N, NW, and NE octants). Similarly, another Wairarapa-
based study (Gao andMaro, 2010) reports a preference for northerly as-
pects, which they suggest is a product of deeper weathering from in-
creased solar radiation and wetting and drying cycles experienced by
north-facing (southern hemisphere) slopes. Wetting and drying cycles
also initiate cracking, resulting in reduced soil cohesion (He et al.,
2020) and allowingwater to penetrate down to the less permeable bed-
rockwhich acts as the surface of rupture (Brooks et al., 2002). The effect
of aspect can also be related to structural geology (e.g., dip direction and
dip angle of bedding planes; Ruff and Czurda, 2008). Crozier et al.
(1980) suggested that preference of landsliding on a particular slope as-
pect can be temporally dynamic. They found weakest conditions at the
bedrock/regolith interface on southerly slopes, and north to west-
facing slopes were less disturbed. They therefore postulate that follow-
ing removal of the original forest cover for pastoral farming,massmove-
ment processesmay have initially favoured southern slopes, providing a
more extensive, weaker, and undisturbed regolith on north-facing
slopes – which was more severely affected in recent times (e.g., the
1977 landslide-triggering rainfall event documented by Crozier et al.,
1980 and Gao andMaro, 2010; see Fig. 2). Indeed, landslide susceptibil-
ity is not static reality, but is temporally dynamic (Gorsevski et al., 2006;
Fig. 2).We therefore include slope aspect in themodel to test whether a
similar preference can be observed today, or if a change is apparent.

The topographic variables were derived from a 1-m digital elevation
model constructed from airborne light detection and ranging (LiDAR)
data from 2013. Since the landslides were triggered before the LiDAR
surveys, amedian filter with 3-m radius was used to removeminor sur-
face roughness produced by the landslide scars to approximate the ter-
rain surface before failure.

Lithology is commonly an important factor in shallow landslide sus-
ceptibility modelling since the material type directly influences soil
properties such as hydraulic conductivity and texture (Smith et al.,
2021). Crozier et al. (1980) found fewer shallow landslides in areas of
alluvium, limestone, and sandstone compared with less permeable for-
mations of mudstone and alternating sedimentary rocks. This observa-
tion corresponds well to patterns in our landslide inventory (cf.
Figs. 1a and 3a), showing a much lower density in limestone terrain.
Thus, we hypothesize that lithology is an important predisposing factor.
Weused lithological data (near-surface rock type) from theNZ LandRe-
source Inventory, whichwas derived from 1:250,000 time-stratigraphic
geological maps, using stereo aerial photograph interpretation and field
verification to aidmapping at a scale of 1:50,000 (Newsome et al., 2008;
Fig. 3a). Lithology was converted from vector format to a grid at 1-m
GSD. We accept that both boundary and material type errors will result
fromusing lithological data ofmuch lower resolution than for terrain at-
tributes. To ensure sufficient samples were gathered across all material
types to safely infer the relationship, we removematerial types that are



Fig. 3. Insert A: Lithology of study area; Insert B: Tree influence models on slope stability (TIMSS) showing location of different tree types within silvopastoral hill country of study area.
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represented in less than 1% of combined presence and absence points
(minimum 861 samples of balanced dataset). This led to the removal
of four material types: “Argillite – crushed”, “Gravels”, “Sandstone or
coarse siltstone – banded”, and “Unconsolidated to moderately consoli-
dated clays” (see Table. 2), which reduced the landslide inventory by
290 to 42,778 scars.

Finally, we include the TIMSS (Spiekermann et al., 2021), which we
use to quantify the reduction in landslide susceptibility due to the pres-
ence of trees in pastoral hill country (Fig. 3b). TIMSS can be defined as
spatial representations of the average influence of individual trees on
slope stability and were developed for different tree genera based on
an empirical relationship between distance from tree and reduction in
soil surface eroded. The TIMSS were fit using least-squares logistic re-
gression. Therefore, the models are sigmoidal in shape reaching an as-
ymptotic value denoting the average maximum effective distance of a
tree, i.e., the point at which the tree has no observable influence on
slope stability due to mechanical and hydrological processes (Schmidt
et al., 2001; Istanbulluoglu and Bras, 2005; Phillips and Marden, 2005;
Schwarz et al., 2010; Cohen and Schwarz, 2017; Kim et al., 2013; de
Jesús Arce-Mojica et al., 2019; Spiekermann et al., 2021). While TIMSS
are normalized to 0–1, where 1 is equal to the maximum influence on
slope stability of an individual tree of a particular vegetation type, a spa-
tial unit (here, a 1-m pixel) may exceed 1 due to the additive contribu-
tions from multiple trees.

TIMSS are available for the dominant tree types in the study area,
which include eucalyptus, kānuka, poplar/willow and coniferous tree
species. Poplars (Populus spp.) and willows (Salix spp.) have been a
cost-effective option for promoting slope stability in New Zealand's pas-
toral hill country. They are easily established from large unrooted poles
and rapidly develop extensive root systems (Phillips et al., 2014).
Willows andmany poplar varieties are tolerant of periodically saturated
5

soils and have comparatively high transpiration rates during the grow-
ing season (Wilkinson, 1999). As with poplars and willows, eucalyptus
(Eucalyptus spp., e.g., Eucalyptus globulus) establish rapidly in cool tem-
perate climates. They are more tolerant to dry soil conditions and sum-
mer droughts, but are overall less abundant in the study area
(Spiekermann et al., 2021). Unlike poplars and willows, coniferous
tree species are mostly found in forestry blocks or used as shelter
belts.While the roots of conifers (mostly Pinus radiata) are not as strong
as kānuka, poplars and willows, they have been shown to root deeply
(>2 m) (Watson et al., 1995). Kānuka (Kunzea spp.) are commonly
found in dense groves and are the most abundant tree species in the
study area. As with most indigenous species in New Zealand, kānuka
are slower growing, have shallower root systems, but higher tensile
strength than exotic species (Watson and Marden, 2004; Phillips et al.,
2011). Since many local environmental factors such as soil and climate
influence the development of tree root architecture, root systems be-
tween andwithin tree species vary considerably – particularly as a func-
tion of plant density as neighbouring plants compete for available
resources (nutrients, water, light) (Danjon et al., 2013). However, due
to the paucity of species-specific data on root architecture, we use the
TIMSS to represent the average influence of an individual tree on
slope stability for the four dominant tree types in the study area, assum-
ing an additive function where more than one tree contributes to slope
stability at a given point in the landscape. Further details of the develop-
ment of TIMSS are given in Spiekermann et al. (2021).

2.4. Landslide susceptibility model

2.4.1. Binary logistic regression
We integrate the TIMSS of four different tree types developed by

Spiekermann et al. (2021) into a binary logistic regression model



Table 3
Comparison of skewness and sampling frequency of TIMSS variables dependence on sam-
pling strategy (all vs 2xED) using single random selection of absences (1:1).

Eucalyptus Kānuka Poplar/willow Conifer All
TIMSS

Skewness (1:1 all) 9.9 3.5 2.8 10.0 2.7
Skewness (1:1 2xED) 7.3 2.5 1.9 7.0 1.9
Presence samples >0 (%) 1.1% 10.2% 15.6% 0.5% 16.0%
Absence samples >0 (%) 1.7% 10.8% 16.4% 2.5% 17.6%
Presence and absence >0
(%)

2.8% 21.0% 32.1% 2.5% 33.6%

2xED absence samples >0
(%)

3.3% 18.7% 28.3% 3.9% 30.5%

2xED presence and
absence >0 (%)

5.1% 35.5% 54.0% 4.7% 56.9%

Mean (presence >0) 0.29 0.36 0.37 0.34 0.62
Mean (absence >0) 0.45 0.56 0.58 0.77 1.02
Mean (2xED absence >0) 0.47 0.55 0.57 0.77 1.02
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(BLR) to quantify the effectiveness of trees in terms of the reduction in
the spatial probability of landslide occurrence. Development of the
BLR method is attributed to Cox (1958) and Walker and Duncan
(1967) and is the most common statistical method used for landslide
susceptibility modelling (Lombardo and Mai, 2018; Reichenbach et al.,
2018). It has been shown to produce comparatively low error rates
(Brenning, 2005; Smith et al., 2021). We adopt BLR since the effect
size of the predictor variables can be quantitatively evaluated using
odds ratios. As discussed by Lombardo and Mai (2018), pseudo-
quantitative methods that use frequency ratios or expert-knowledge
to determine weights for pre-disposing factors (e.g., Persichillo et al.,
2017) are not based on underlying probability distributions and are
therefore unable to represent the probability of landslide occurrence,
which limits the statistical interpretation of the models.

BLR is well suited to landslide susceptibility modelling since it
models the probability of a binary response variable (Y = 0|1), which
corresponds to the absence/presence of landslides. Independent vari-
ables can be both numerical and categorical, and as with all regression
analyses, the variability of Y is explained in terms of covariates x1, …,
xi. In BLR, the linear function takes on the form:

logit Yð Þ ¼ log
p

1−p

� �
¼ β0 þ β1x1 þ . . .þ βixi ð1Þ

where y is the dependent variable, i.e., landslide occurrence, xi is the i-th
explanatory variable, β0 is a constant, βi is the i-th regression coefficient,
and logit is the link function used to convert log-odds (±∞) to probabil-
ity. The logistic function is sigmoidal in shape and always yields values
between 0 and 1. The probability of landslide occurrence can thus be
formulated as:

p Y ¼ 1ð Þ ¼ 1
1þ exp− β0þβ1x1þ...þβixið Þ ð2Þ

Themaximum likelihood estimator is used to fit optimal coefficients
for all predictor variables. The maximum likelihood function iteratively
fitsmodel coefficients so that p yields values close to 1where Y=1, and
values close to 0where Y=0untilmodel convergence is reached. In the
context of landslide susceptibility, the probabilities from logistic regres-
sion correspond to the predisposition of a given mapping unit to
landsliding and are thus often referred to as spatial probabilities with
no regard for temporal probability. Logistic regression modelling was
performed using the caret package (Kuhn, 2008) within the open-
source statistical software R (R Development Core Team, 2021); The
raster package was used for model predictions (Hijmans, 2020).

Logistic regression assumes independence of the predictor variables.
We used the car package in R (Weisberg and Fox, 2010) to test for mul-
ticollinearity by quantifying the variance inflation factor (VIF) for all
continuous variables. Variable selection is carried out using a prelimi-
narymodelwith full sample size. A predeterminedVIF threshold is com-
monly used to select variables for removal from the model. While a
threshold of 10 is more common (O'Brien, 2007; Heckmann et al.,
2014; Smith et al., 2021), we use a more stringent threshold of 2 that
has also been used by other authors (e.g., Van Den Eeckhaut et al.,
2006). Additionally, all variables were removed with a test-statistic for
the Wald test (z-statistic) of less than 2, which means the effect size is
not significantly different from 0 (95% confidence level) and removal
will not significantly affect model fit. All subsequent models use the
same variables following removal of insignificant predictor variables.

2.4.2. Sampling design
Landslide susceptibility modelling using logistic regression relies on

points in the landscape representing presence and absence of land-
slides. Though we expect our observations to be correlated, the follow-
ing steps were taken to increase independence in our observations:
each landslide scarwas represented by a single centroid pixel (landslide
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initiation point – LIP) before extracting spatial data to both landslide
presence and absence points. This is a commonmethod aimed at reduc-
ing spatial autocorrelation between observations (Atkinson and
Massari, 1998; Van Den Eeckhaut et al., 2006; Petschko et al., 2014;
Lombardo and Mai, 2018). In addition, and before generating absence
points, we created a mask to ensure spatial independence of landslides
and non-landslides by buffering all landslide polygons by 7.3 m. This
distance denotes the 90th percentile of the radius r of the landslide
scar inventory, assuming a circular shape. Absence points thus needed
to be separated by a distance of 2r, or 14.5 m. Random absence points
were generated in R using the QGIS implementation qgisprocess pack-
age, an update to the RQGIS package (Muenchow et al., 2017).

As noted by Knevels et al. (2020) and Heckmann et al. (2014), the
implications of the method used to generate absence points are seldom
adequately considered. To evaluate the sensitivity of our model to the
selection of absence data, we test the hypothesis that different sampling
methods for absence points render significantly different effect sizes for
the tree variables. The rationale for doing so is that in silvopastoral land-
scapes trees are relatively sparsely distributed across the landscape and
– by implication – the randomly generated absence points are more
likely to fall in openpasture. Since shallow landslides are predominantly
triggered in open pasture, the implication is that both presence and ab-
sence pointsmostly have TIMSS values of 0 (Fig. A1; Table 4). Therefore,
all four TIMSS variables have very high positive skewness in the distri-
bution of both presence and absence samples (Table 3).While themax-
imum likelihood estimator is tolerant of highly skewed continuous
predictors with large sample sizes, the effect sizes of the variables can
be inflated (Alkhalaf and Zumbo, 2017).

The following sampling design is used for presence and absence se-
lection:

A. Spatially restricted sampling to twice the effective distance (2xED) of
TIMSS: We created masks at twice the effective distance from trees
for each of the TIMSS, which corresponds to 26 m for eucalyptus,
34 m for conifers and kānuka, and 40 m for poplar and willow
trees. This has the effect of creating more even spatial odds for pres-
ence and random absence points to be located within or beyond the
effective distance of trees. This approach reduces the skewness of
the TIMSS variables (Table 3). We further hypothesised that this
sampling strategy will increase the ability of the maximum likeli-
hood estimator to produce consistent effect sizes. A consequence
of masking to 2xED was a reduction in the size of the study area by
45.7% to 458 km2. Landslide presence points within 2xED amounted
to 26,038. Following Knevels et al. (2020), we randomly generated
absence points using a 5:1 absence-presence ratio within the same
mask, then resampled n = 100 times with a 1:1 landslide
presence-absence ratio to account for random variability in the ab-
sence samples.
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B. Random sampling across the entire study area (All): Absence points
were randomly generated to create five times the number of land-
slide points (213,890). As with sample design A, we resampled
n = 100 times with a 1:1 landslide presence-absence ratio to pro-
duce balanced datasets of 42,778 presence and absence points. To
compare like-for-like with sample design A (2xED), we reduced
the sample size to 26,038 presence and absence points.

C. Combined TIMSS vs class-specific: To quantify the total effect of trees
on landslide susceptibility, the sum of the four TIMSS was included
as a single tree factor in separate model runs. This had the effect of
reducing the positive skewness associated with the TIMSS of each
tree type (Table 3). Effect size and model performance were com-
pared with those of class-specific TIMSS.

D. Effect of sample size: To determine the number of samples required
for optimal model performance, we tested model performance for
different sample sizes (Heckmann et al., 2014; Petschko et al.,
2014; Smith et al., 2021). By reducing the sample size, the average
distance between observations increases. This results in greater in-
dependence in observations but can come at a cost of not adequately
sampling from the diversity of predictor variables in the study area.
Small sample sizes lead to greater model variability, which is re-
versed with increasing sample size. We investigated the point at
which spatial autocorrelation was minimized without the cost of
poorer model performance. Additionally, we evaluated the effect of
sample size on estimation of coefficients and odds ratios. We posit
that if effect sizes are not significantly altered with decreasing sam-
ple sizes, we may conclude that spatial autocorrelation is not inflat-
ing variables when fitting a model using full sample size. We expect
model variability to eventually plateau with increasing sample size.
The following ten sample sizes were selected: 50, 100, 250, 500,
1000, 2000, 4000, 8000, 16,000, and full sample size of 26,038 pres-
ence and absence points. The varied sample sizes were also used to
contrast samplingdesignA (no spatial restrictions), and B (2xED), al-
beit for a single randomly sampled equal number ofabsence points.

2.4.3. Model prediction performance
To test model prediction performance of eachmodel, we used k-fold

(k=5) cross validation (CV). Sampleswere randomly partitioned into k
folds, whereby k − 1 folds are used to train the model and the remain-
ing fold used to test the predictive ability of the model using selected
performance measures. This is repeated until each of the five folds has
been used for model testing. To ensure the performance measures are
not influenced by a particular data partitioning, this process is repeated
10 times. Moreover, we use 100 balanced datasets, eachwith a different
set of randomly selected absence points for 10 repeats of k-fold CV,
yielding a total of 5000 coefficient estimates and performance metrics.

Receiver operator curves (ROC) are used to estimate model perfor-
mance by plotting the true positive rate (sensitivity) against false posi-
tive rate (1 – specificity) for eachmodel run across all potential cut-offs.
The area under the ROC (AUROC) summarizes amodel's prediction per-
formance for balanced samples as it does not depend on the cut-off used
to calculate classification accuracy (Hosmer and Lemeshow, 2000). An
AUROC score of 1 would mean themodel can perfectly discriminate be-
tween presence and absence of landslides in its predictions; a value of
0.5 corresponds to no discriminatory power and is equal to that
achieved by pure chance. Since a subset of the randomly generated ab-
sence points are likely to be located in terrain susceptible to landsliding
(i.e.,with values similar to those of presence points), anAUC score of 1 is
highly unlikely. A good AUC score is considered to be between 0.8 and
0.9; an excellent score is >0.9 (El Khouli et al., 2009). Model perfor-
mance metrics and regression coefficients are stored for each of the
four samplingmethods (A-D). The optimum sampling strategy is deter-
mined by comparing performance metrics (median AUROC) and ex-
ploring implications for number and density of landslide samples on
model variability.
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Following selection of the optimal sampling strategy, spatial predic-
tions of susceptibility aremade for the two case study sites. The suscep-
tibility values indicate where landsliding can be expected in future,
i.e., the values are the probability of belonging to a class associated
with unstable terrain (where Y= 1). We classified these spatial proba-
bilities of landslide occurrence into three susceptibility classes of low,
medium, and high (Petschko et al., 2014; Lombardo and Mai, 2018).
The classes correspond to the 5, 20 and, 80 percentiles of the probability
distribution extracted at 42,778 LIPs.

2.4.4. Quantifying effectiveness of biological erosion control
As with previous studies that investigated the importance of specific

factors in explaining landslide occurrence (Schmaltz et al., 2017;
Knevels et al., 2020), we calculated odds ratios (OR) for each of the
TIMSS covariates to compare the effectiveness of different tree species
in reducing the spatial probability of landslide occurrence. Odds were
obtained by exponentiating both sides of Eq. (1) so that:

odds ¼ p
1−p

¼ eβ0þβ1x1þ...þβixi ð3Þ

Thus, for a unit increase in covariate xi, the odds of a spatial unit
being susceptible to landsliding increase by a factor eβi, as expressed
by odds ratios:

OR ¼ odds xþ 1ð Þ
odds xð Þ ¼ eβ0þβ1x1þ...þβi xiþ1ð Þ

eβ0þβ1x1þ...þβixi
¼ eβi ð4Þ

As the TIMSS variables are on the samenormalized scalewith a value
of 1 denoting themaximum tree influence of an individual tree of a veg-
etation type on slope stability, a direct comparison is possible without
rescaling. Besides comparingORof the four TIMSS variables,we ran pre-
dictions for Sites 1 and2 iteratively dropping a TIMSS variable to explore
the impact of the different tree types in reducing landslide susceptibil-
ity. We then illustrate how the landslide susceptibility model can be
used to quantify the reduction in shallow landslide erosion due to
trees present in the landscape.

3. Results

3.1. Variable importance, estimation of effect sizes, and model performance

Multicollinearity tests showed all continuous variables to have a VIF
<3, with the kānuka and poplar/willow TIMSS variables the only factors
with a VIF slightly above 2. Thus, all continuous variables were retained
in themodel. Two lithologies, “Mudstone or fine siltstone– banded” and
“Mudstone or fine siltstone – jointed”, were removed from the BLR
model as the coefficients were not significantly different from 0 and,
thus, did not contribute to an improved model fit. Therefore, these
two lithologies effectively became the reference category. The remain-
ing six lithologies had coefficients that are significantly less than 0,
which means the odds of shallow landsliding are significantly reduced
(Table 4). Thus, the most susceptible lithology in the study area are
“Mudstone or fine siltstone – banded” and “Mudstone or fine siltstone
– jointed”, closely followed by “Mudstone or fine siltstone – massive”
and “Sandstone/coarse siltstone – massive”.

The effectiveness of trees at reducing landslide erosion was quanti-
fied using odds ratios, which can be interpreted as factors of change in
the odds of a spatial unit being susceptible to shallow landslide erosion.
Results show the chosen sampling strategy has very little impact on var-
iation in effect sizes, which is evidenced byminor variations in the odds
ratios of the species-specific TIMSS (Fig. 4). Interestingly, the 2xED sam-
pling strategy did not drastically change the effect sizes of TIMSS predic-
tor variables. There is a notable difference in odds ratios of the TIMSS
across vegetation types. Sampling from all available presence and ab-
sence points (All), median odds ratios for eucalyptus (0.04) and conifer



Table 4
Coefficients, associated standarderrors, z-statistics, and odds ratios of predictor variables offinalmodel. p-value ofWald's test and likelihood ratio test < 0.001 for all variables. Note, inputs
to the model were not standardized to allow easier interpretation with knowledge of units (Table 1).

Term β Std. error z statistic OR (95% CI)

(Intercept) −6.941 0.058 −119.6
Slope 0.284 0.002 137.2 1.33 (1.32,1.33)
Northernness 0.698 0.017 41.0 2.01 (1.94,2.08)
Easternness 0.209 0.016 13.1 1.23 (1.19,1.27)
Eucalyptus −3.325 0.159 −20.9 0.04 (0.03,0.05)
Kānuka −1.228 0.067 −18.2 0.29 (0.26,0.33)
Poplar/Willow −1.077 0.054 −19.9 0.34 (0.31,0.38)
Conifer −3.195 0.170 −18.8 0.04 (0.03,0.06)
Alluvium (1 vs 0) −0.591 0.118 −5.0 0.55 (0.44,0.7)
Greywacke (1 vs 0) −2.390 0.112 −21.4 0.09 (0.07,0.11)
Limestone (1 vs 0) −1.261 0.051 −24.5 0.28 (0.26,0.31)
Loess (1 vs 0) −0.588 0.031 −18.8 0.56 (0.52,0.59)
Mudstone/fine siltstone – massive (1 vs 0) −0.165 0.030 −5.4 0.85 (0.8,0.9)
Sandstone/coarse siltstone – massive (1 vs 0) −0.220 0.039 −5.6 0.8 (0.74,0.87)
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(0.04) TIMSS were significantly less than that of the poplar/willow
(0.33) and kānuka (0.32) TIMSS (Fig. 4). Merging all TIMSS into a single
tree variable resulted in a median odds ratio of 0.28 (using unrestricted
sampling strategy (All)), which is comparable to that of poplar/willow
and kānuka. The merged TIMSS also results in less variation in estima-
tion of effect size compared to the species-specific TIMSS. However, re-
sults show that bothmerging TIMSS into a single tree variable and using
2xED sampling led to a reduction in median AUROC (Fig. 5).

As expected, model performance increased greatly with increasing
sample size, plateauing above a sample size of 1000 (Fig. 6b, c). The
larger range in ROC scores with reduced sample sizes suggests deficient
model performancewith less than 1000presence/absencepoints.While
this holds true for both sampling strategies (All vs. 2xED), randomly
sampling from the entire dataset of presences and absences consistently
produced higher median ROC scores and less variance. Odds ratios of
the TIMSS fluctuate more with reduced sample sizes and are not
Fig. 4. Comparison of odds ratio of species-specific TIMSS variables andmerged TIMSS from 10
different spatial sampling methods (2xED vs All).
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significantly altered with increasing sample sizes beyond 1000 pres-
ence/absence points (7a).

The final model used for predictions adopted a sampling strategy
using all presence and absence points – again generating 100 balanced
sets of all LIPs (42,778) and equal number of absence points, randomly
sampled from 5× the number of scars. Again, 5-fold cross-validation
using 10 repeats on each of the 100 balanced datasetswas used to quan-
tify model performance (Fig. 7). Median AUROC of the 5000 train-test
cycles was 0.946, and an IQR of 0.002 (Fig. 7a). The model with the
highest median AUROC of the 100 sets was selected for predictions,
which had a median AUROC of 0.948 and an accuracy of 88.7% using a
cut-off of 0.5 (Fig. 7b). The very low IQR of AUROC suggests model per-
formance is not dependent on the selection of absence points. Variable
coefficients and OR of the final model are shown in Table 4. Eucalyptus
and conifer TIMSS have the lowest OR at 0.04, followed by kānuka and
poplar/willowwith 0.29 and 0.34, respectively. The low 95% confidence
0 BLR models using balanced sample sizes of 26,038 presence and absence points and two



Fig. 5. Boxplots showing AUROC of four different logistic regression models using 10 × 5-
fold CVwith 100 balanced resamples of presence and absence points sampled from: 1) all
available landslide presence and absence points; 2) as (1) but with merged TIMSS
predictors; 3) landslide presence and absence points within twice the effective distance
to trees (2xED); and 4) as (3) but with merged predictors.
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intervals indicate high precision of the odds ratios. The spatial distribu-
tion of the ORs is shown in Fig. 8.

3.2. Quantifying effectiveness of biological erosion control

For Sites 1 and 2, we illustrate how the landslide susceptibility
model can be used to quantify the reduction in landslide erosion due
to trees present on the farms. Here, landslide erosion refers to source
scar erosion only, not necessarily erosion along the transition zone.
We classified the spatial probabilities of the landslide susceptibility
map into the three distinct classes based on thresholds related to the
percentage of observed landslides falling within each susceptibility
class of low (<0.32), medium (0.32–0.72) and high (>0.72) corre-
sponding to the 5, 20 and 80 percentiles (Fig. 9). Thus, assuming the
same triggering events occur in the future, 80% of landsliding can be ex-
pected to be triggered in the “high” class, a further 15% in the “medium”
class, and remaining 5% in the “low” class.

Using the final BLR model (Fig. 7b), landslide susceptibility predic-
tions were made for Sites 1 and 2 with and without the TIMSS variables
(Fig. 10). Moreover, we iteratively removed a TIMSS variable to explore
the impact of the different tree types in reducing landslide susceptibility
(Fig. 11).

Sites 1 and 2 have similar distributions of landslide susceptibility
across the three classes following removal of tree cover, with 15.0% of
Site 1 classified as highly susceptible compared to 14.7% at Site 2
(Fig. 11). Due to current levels of tree cover, the proportion of the
sites with highly susceptible land has reduced to 12.1% at Site 1 and
7.3% at Site 2. There is less change in the medium class at Site 1 with a
reduction from 17.7% to 16.2%, compared with a reduction from 24.2%
to 18.2% at Site 2. At both sites, poplars and willows have contributed
most to the reduction, followed by kānuka and eucalyptus. This is not
only a function of the abundance, but also due to the efficiency of pop-
lars/willows using wide spacings. While kānuka is the most abundant
species in terms of stem count, it is more often concentrated in dense
groves. Poplars/willows are distributed more evenly across the suscep-
tibility classes at both sites. This may be because willows are frequently
used for riparian planting to stabilize banks in areas of low landslide
susceptibility, but it may also indicate a lack of targeted erosion control
of highly susceptible slopes. Eucalyptus species at Site 2 are also more
efficient than conifers, contributing to an 11% reduction in the high
class due to an average density of 5.1 stems/ha. In contrast, kānuka
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has reduced susceptibility in the high class by 16.1% due to an average
density of 31.1 stems/ha. Thus, wider spacings between trees results
in more efficient use of plant material.

Accounting for the rate of landslide erosion across different suscep-
tibility classes (Fig. 9), and assuming the triggering mechanism of ob-
served landslides is the same in the future, landslide erosion has been
reduced by 16.6% at Site 1 and 42.9% at Site 2 due to all existing vegeta-
tion. While these reductions have been aggregated for each site, the re-
sults are scale dependent (e.g., local/paddock vs. farm/catchment).
Within each site there is much spatial variation depending on where
pre-existing vegetation is located and where plantings have been con-
centrated in the past.

4. Discussion

4.1. Highly skewed predictor variables for logistic regression

Spatially restricted sampling increased the proportion of both pres-
ence and absence points with a TIMSS value >0 – in all cases reducing
the positive skew (Table 3). However, due to the difference in abun-
dance across the tree classes within the study area, the positive skew-
ness remained high for both eucalyptus (9.9 down to 7.3) and conifer
(10.0 to 7.0) compared with kānuka (3.5 to 2.5) and poplar/willow
TIMSS (2.8 to 1.9). This is simply a reflection of the proportion of sam-
ples in proximity to conifers and eucalyptus species in the study area
(for species abundance see Spiekermann et al., 2021). Since the positive
skewness associated with eucalyptus and conifer TIMSS remains high
regardless of sampling strategy used, the risk of inflated effect size is
not significantly reduced. Yet, Alkhalaf and Zumbo (2017) found that
highly skewed continuous predictors are only problematic when sam-
ples sizes are small. Given that we use very large sample sizes (total of
85,556 using all LIPs and equal number of absence points), we can as-
sume that the highly skewed eucalyptus and conifer TIMSS predictors
will not affect the estimation and inferences.

However, we further tested this by creating domain-specific models
by iteratively sampling presence and absence points according to tree
type, i.e., restricting sample selection to 2xED of the conifer class,
followed by eucalyptus class. This significantly reduced the sample
size (conifer domain: 1477 LIPs; eucalyptus domain: 3092), but also re-
duced the positive skewness (conifer domain 2.15; eucalyptus domain
2.49). Interestingly, the estimate of effect size was not significantly al-
tered due to the reduction in positive skewness (OR: conifer TIMSS
0.07; eucalyptus TIMSS 0.09). Thus, we conclude that the estimates pro-
duced using all available LIPs are valid and robust.

4.2. Effect sizes and model performance

In terms of differences in effect size, the BLR found a notable differ-
ence in OR across tree type, including the spatial distribution surround-
ing trees (Table 4; Fig. 8). In particular, the lower odds in landslide
occurrence associated with Pinus radiata contradict knowledge of the
root strengths of these species. Watson and Marden (2004) found
mean live-root tensile strengths for Pinus radiata to be only 40% and
50% of kānuka and ‘Veronese’ poplar (Populus deltoides x nigra) root
strengths, respectively. In part, this apparent discrepancy may be ex-
plained by the greater density of planted conifers compared with pop-
lar/willows and may also be due to differences in age distributions.
Furthermore, a value of 1 in the conifer and kānuka TIMSS corresponds
to the influence of approximately 3 stems on average, since these spe-
cies are more difficult to delineate, given crown morphology and tree
density (see Spiekermann et al., 2021). However, some uncertainty
and error from the landslide mapping and species classification will be
propagated through to the measure of effect size for different tree
types. We note that in the process of mapping landslides, scars (or por-
tions thereof)may have been obscured by the canopy cover. This source
of error may lead to an overestimation of effect size of trees, which



Fig. 6. A) Dependence of odds ratio of TIMSS variables on sample size; Data gaps are values >1. B) and C) Area under ROC (median, range) with increasing sample size, contrasting
sampling strategies based on single random sample and 20 × 5-fold CV.
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would likely be more pronounced for smaller landslide inventories. Ad-
ditionally, the influence of trees on slope stability is dependent on the
age of the tree and the extent of the root systems. This study uses a
fixed representation of tree influence on slope stability for four tree
types, which does not change as a function of allometric relationships
to above-ground metrics such as tree height.

To determine whether spatial autocorrelation was present and
resulting in inflated effect sizes of the TIMSS variables, we compared
resulting ORs based on nine different sample sizes (100–26,038). With
samples >1000 presence and absence points, estimates became
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relatively stable while the range in AUROC of repeated train-tests
using cross-validation dropped below 0.1 (Fig. 6C). Since estimates of
effect sizes were not significantly altered with smaller sample sizes,
we may conclude that spatial autocorrelation is not inflating variables
when fitting models using the full sample size. Furthermore, including
all available data to train the model results in an improvement in
model performance without affecting statistical inferences.

The performance of the final model has an AUROC of 0.95, which
equates to an accuracy of 88.7% using a cut-off of 0.5 for binary classifi-
cation (Fig. 7B). Given the relatively simple model with few predictor



Fig. 7.A: Boxplot of AUROC based on 100 balanced sets of all landslide scars (42,778) and equal number of randomly selected absence points, each using 10× 5-fold cross-validation (total
of 5000 resamples). Best of the 100 final models was selected using greatest median AUROC score for predictions. B: The ROC of the final model selected for predictions – ROC of 50 folds
(grey), final model (red dash; AUROC 0.948).
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variables, a comparably high AUROC score was achieved, which is not
uncommon when LiDAR data are used for detailed topographic repre-
sentation (e.g., Petschko et al., 2014; Knevels et al., 2020). The detailed
representation of land cover through integration of individual trees im-
proved model performance – albeit subtle with an increase in AUROC
from 0.937 to 0.948. Thus, models with different predictor variables
can be similar in terms of their performance, but the implications can
be significant for the geomorphic plausibility of spatial predictions and
land management decisions (Steger et al., 2016a).

Further improvements in performance by including additional pre-
dictor variables (e.g., curvature or surface roughness) are likely to be in-
cremental, since a proportion of randomly generated absence points
will always be located on slopes susceptible to landslide erosion. In
our two case studies, these highly susceptible areas equated to approx-
imately 7.3% and 12.1% (Fig. 11). Sensitivity using the final model was
calculated to be 0.859, and specificity 0.903, which means the rate of
false positives was lower than that of false negatives. Therefore, false
positives are inherently unavoidable using this method to create ab-
sences for binary logistic regression.
Fig. 8. Spatial distribution of odds ratio for each tree type as a function of distance from
tree. Odds ratios are calculated using the exponential function of the regression
coefficient multiplied with the TIMSS values at increasing distance from a tree. An odds
ratio of 1 means there is no change to outcome (= maximum effective distance of an
individual tree), and an odds ratio less than 1 is associated with lower odds of outcome.
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Besides the TIMSS variables, the topographic and lithology predic-
tors are important factors to consider. Slope gradient has an OR of
1.33, whichmeans that for an increase in 1 degree, the odds of landslide
occurrence increase by a factor of 1.33, and since the increase is expo-
nential, an increase of 10 degrees increases the odds by a factor of
17.06. Northern aspect doubles the odds of landsliding compared with
southern aspect, whereas an east-west gradient was less important,
though landslide susceptibility increases slightly on eastern aspects
(Table 3). In terms of lithology, greywacke and limestone are the least
susceptible lithologies with ORs of 0.09 and 0.28, respectively. These
ORs are to be interpretedwith reference to the two reference lithologies
“Mudstone or fine siltstone – banded” and “Mudstone or fine siltstone –
jointed”, i.e., with all else equal, the odds of landsliding on limestone are
a tenth of that on mudstone.

Statisticalmodels have previously been used to evaluate variable im-
portance and effect sizes of differing land covers to explain landslide oc-
currence, albeit not at the level of individual trees. For example, Knevels
et al. (2020) examined differences across LULC classes. The authors
found broad-leaf and mixed forests were less susceptible to landslides
than conifer forests. Moreover, forests were in general far less likely to
Fig. 9. Cumulative percentage of landslide scars in three susceptibility classes defined
according to 5, 20, and 80 percentiles of probability values at landslide initiation points.
The class thresholds correspond to probability values of 0.32, and 0.72.



Fig. 10. Landslide susceptibility for a small area within Site 1: A) Landslide susceptibility with no trees; B) Landslide susceptibility with trees present in 2013; C) distribution of trees –
mainly poplars/willows, and eucalyptus species. Note, the eucalyptus grove in the southeast of insert C has led to a much greater reduction in landslide susceptibility compared with
the poplars and willows to the west, which were largely planted in areas of low susceptibility.
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experience landsliding compared to non-forested areas (odds ratio of
0.03). A similar forest effect, albeit of lower magnitude (odds ratio of
0.21) has been found elsewhere (Schmaltz et al., 2017). These results
are supported by many additional studies that found substantial differ-
ences in landslide occurrence across different land cover classes (Glade,
1998, 2003; Song et al., 2008; Basher, 2013; Marden et al., 2014;
Papathoma-Köhle and Glade, 2013; Phillips et al., 2018). Persichillo
et al. (2017) investigated the effect of land use changes on the occur-
rence of shallow landslides using multi-temporal land-use maps.
Other studies have combined assessments of historic land cover dynam-
ics to inform future scenarios (Reichenbach et al., 2014; Pisano et al.,
2017; Torizin et al., 2018). Concluding that land cover significantly al-
ters landslide risk, they encourage the use of multi-temporal landslide
inventories aligned with concurrent LULC data. Indeed, landslide sus-
ceptibility is no static reality, but is temporally dynamic (Gorsevski
et al., 2006).

4.3. Implications for land management

The landslide susceptibility model developed here can be used to
improve targeting of erosionmitigationmeasures. An interesting obser-
vation from the case studies is that landsliding is highly concentrated to
certain areas of the landscape. Indeed, 80% of future landsliding is pre-
dicted to be found within 12.1% (206 ha) and 7.3% (34 ha) of Sites 1
and 2, respectively (Fig. 11). This points towards the potential for
smarter targeting of erosion control. Conversely, implementing tree
planting in less susceptible terrain (e.g., the medium class) will not be
as efficient in terms of reduction in landslide erosion on a per tree
basis since only 15% of landslides are expected to occur in terrain of me-
dium susceptibility. Yet, the feasibility of treatment is likely to be
12
reduced in areas of high susceptibility due to unfavourable conditions
for plant growth (e.g., shallow soils, increasedmoisture stress, exposure
to wind gusts, etc.).

Recently, national-scale assessments aimed at quantifying on-farm
mitigation in New Zealand assumed a 70% reduction in sediment yield
across all farms that had a farm environmental plan involving widely
spaced plantings of trees (Neverman et al., 2019; Monaghan et al.,
2021) – which assumes space planting of all slopes (Hawley and
Dymond, 1988). Such assumptions are commonly used inmodels to in-
form policy development at regional to national scale (Basher et al.,
2020; McDowell et al., 2020; Monaghan et al., 2021). Using high resolu-
tion data, this study, while limited to two farms, has undertaken a spa-
tially explicit quantification of the reduction in landslide erosion due to
trees actually present in the landscape. Both farms have a history in soil
conservation – Site 1 since the 1980s, Site 2 since the 1950s. The results
shed some doubt on the previously assumed effectiveness of tree plant-
ing in the context of farm environment plans, sincemitigation effective-
ness is very much dependent on the scale of plantings (both number
and density) and the targeting of susceptible land. In the absence of spa-
tially explicit assessments that evaluate the reduction in landsliding due
to actual mitigation measures, the assumptions made by such national-
scaled models may provide misleading expectations to policy planners
and practitioners alike when not interpreted with good knowledge of
the assumptions.

5. Conclusion

We developed a landslide susceptibility model using binary logistic
regression for silvopastoral landscapes. For the first time, the influence
of individual trees of different vegetation types is integrated into a



Fig. 11. For Sites 1 (left column) and 2 (right column): percentage of landslide susceptibility classes (low,medium, and high)with andwithout trees; contribution of different tree types to
change (%) in landslide susceptibility; density (stems/ha) of different species across susceptibility classes.
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statistical landslide susceptibility model. Model performance was very
good, with a median AUROC of 0.95 in the final model used for predic-
tions, which equates to an accuracy of 88.7%. The effect of highly skewed
continuous variables on the maximum likelihood estimator was
investigated by testing different sampling strategies aimed at reducing
positive skewness. With an adequate sample size, we found that highly
skewed continuous predictor variables do not result in an inflation of
effect size.

The effectiveness of trees at reducing landslide erosion was quanti-
fied using odds ratios, which can be interpreted as factors of change in
the odds of a spatial unit being susceptible to shallow landslide erosion.
The odds ratio for poplar/willow trees indicated that the odds of shallow
landslides were reduced by a factor of 0.34 close to the base of poplar/
willow trees, whereas at a distance of 20 m from the tree, the average
tree had no measurable effect on landslide susceptibility. Eucalyptus
had a lower odds ratio (greater effect) at close proximity with an OR
of 0.04 at tree stem, but reaching an odds ratio of 1 at 13 m. Kānuka
13
had a similar spatial pattern to poplar/willows, but is more difficult to
interpret as individual trees are more difficult to delineate, which
means the effect is a function of multiple stems (approximately 3
stems).

We illustrated application of the landslide susceptibility model by
quantifying the reduction in shallow landslide erosion due to trees, for
two case study sites, and also evaluated reductions achieved by tree
type. Future landslide erosion was reduced by 16.6% at Site 1 and
42.9% at Site 2 due to all existing vegetation. The effectiveness of indi-
vidual trees on reducing landslide erosion was shown to be less a func-
tion of species than that of targeting highly susceptible areas with
adequate plant densities. We found 80% of landslides are triggered in
12.1% and 7.3% of Sites 1 and 2, respectively, suggesting there is great
potential for smarter targeting of erosion control by decision-makers
in land management. The high-resolution spatial information provided
by the landslide susceptibility map can be used to support the develop-
ment of landslide erosion mitigation measures.
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