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A B S T R A C T   

Silvopastoralism in New Zealand’s highly erodible hill country is an important form of erosion and sediment 
control. Yet, there has been little quantitative work to establish the effectiveness of space-planted trees in 
reducing shallow landslide erosion. We propose a method to provide high-resolution spatially explicit individual 
tree influence models at landscape scale for the dominant species in pastoral hill country. The combined hy-
drological and mechanical influence of trees on slopes is inferred through the spatial relationship between trees 
and landslide erosion. First, we delineate individual tree crowns and classify these into four dominant species 
classes found in New Zealand’s pastoral hill country. This is the first species classification of individual trees at 
landscape scale in New Zealand using freely accessible data, achieving an overall accuracy of 92.6%. Second, we 
develop tree influence models for each species class by means of inductive inference. The inferred empirical tree 
influence models largely agree with the shape and distribution of existing physical root reinforcement models. Of 
exotic species that were planted for erosion and sediment control, poplars (Populus spp.) and willows (Salix spp.) 
make up 51% (109,000 trees) in pastoral hill country at a mean density of 3.2 trees/ha. In line with previous 
studies, poplars and willows have the greatest contribution to slope stability with an average maximum effective 
distance of 20 m. Yet, native kānuka (Kunzea spp.) is the most abundant woody vegetation species in pastoral hill 
country within the study area, with an average of 24.1 stems per ha (sph), providing an important soil con-
servation function. A large proportion (56% or 212.5 km2) of pastoral hill-country in the study area remains 
untreated. The tree influence models presented in this study can be integrated into landslide susceptibility 
modelling in silvopastoral landscapes to both quantify the reduction in landslide susceptibility achieved and 
support targeted erosion and sediment mitigation plans.   

1. Introduction 

Woody vegetation significantly modifies hillslope hydrological and 
mechanical properties that control shallow landslide triggering pro-
cesses and is an effective nature-based erosion mitigation instrument 
(Schmidt et al., 2001; Istanbulluoglu and Bras, 2005; Phillips and Mar-
den, 2005; Schwarz et al., 2010a; Cohen and Schwarz, 2017; de Jesús 
Arce-Mojica et al., 2019). Several previous studies have aimed to 
quantify the influence of woody vegetation on slope stability, albeit 
mostly limited to protection forests (e.g. Phillips et al., 2011; Cislaghi 
et al., 2017). Irrespective of the type of woody vegetation, methods to 
quantify the effectiveness of biological landslide erosion control gener-
ally use i) empirical, ii) physical-, or iii) statistical-based approaches. 

Quantitative empirical studies aim to measure the degree to which 
soil conservation treatment has reduced landslide erosion compared 
with untreated areas (Hawley and Dymond, 1988; Hicks, 1989a, b, 
1992; Thompson and Luckman, 1993; Phillips et al., 2008; Douglas 
et al., 2009, 2013; McIvor et al., 2011, 2015). These studies show 
space-planted trees reduce landslide erosion by 70–95% within their 
assumed sphere of influence (e.g. a 10-m radius) compared with paired 
control sites. 

Physical models of tree influence use quantitative measures for the 
mechanical and hydrological mechanisms of vegetation to estimate the 
increase in soil cohesion and slope stability achieved (e.g. Schmidt et al., 
2001; Cohen et al., 2011; Schwarz et al., 2012; 2016; Moos et al., 2016; 
Gonzalez-Ollauri and Mickovski, 2017; Cislaghi et al., 2017). Physical 

* Corresponding author. Landcare Research New Zealand Ltd, Private Bag 11052, Palmerston North, New Zealand. 
E-mail address: SpiekermannR@landcareresearch.co.nz (R.I. Spiekermann).  

Contents lists available at ScienceDirect 

Journal of Environmental Management 

journal homepage: http://www.elsevier.com/locate/jenvman 

https://doi.org/10.1016/j.jenvman.2021.112194 
Received 18 November 2020; Received in revised form 10 January 2021; Accepted 13 February 2021   

mailto:SpiekermannR@landcareresearch.co.nz
www.sciencedirect.com/science/journal/03014797
https://http://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2021.112194
https://doi.org/10.1016/j.jenvman.2021.112194
https://doi.org/10.1016/j.jenvman.2021.112194
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2021.112194&domain=pdf


Journal of Environmental Management 286 (2021) 112194

2

slope stability models that incorporate such measures of root rein-
forcement are sophisticated in replicating the processes governing slope 
stability, but their data requirements are significant, and extrapolation 
of measurements beyond individual sites is a challenge (Salvatici et al., 
2018). Furthermore, root morphologies are modified by climatic and 
edaphic factors, which include physical soil conditions, resulting in 
highly variable root morphologies – even within a single species 
growing in different environments (Watson and O’Loughlin, 1990; 
Coppin and Richards, 1990; Stone and Kalisz, 1991; Phillips and Wat-
son, 1994; Schmidt et al., 2001; Phillips and Marden, 2005). Therefore, 
physical slope stability models are generally used for landscapes with 
homogenous vegetation such as protection forests (e.g. Genet et al., 
2010; Moos et al., 2016; Temgoua et al., 2016). The advantages of 
physical root distribution models, and their integration into slope sta-
bility models, was demonstrated by Schwarz et al. (2016), who deter-
mined optimal planting strategies using poplar trees for erosion control 
at hillslope scale for a New Zealand case study. 

Statistical landslide susceptibility modelling is a common method 
used to disentangle the influence of a range of drivers that determine 
spatial variation in the probability of landsliding (Guzzetti et al., 2006; 
van Westen et al., 2008; Kanungo et al., 2009; Van Den Eeckhaut et al., 
2009; Reichenbach et al., 2018; Knevels et al., 2020; Smith et al., 2021). 
In the absence of detailed vegetation classifications that would provide 
greater resolution in terms of the mechanical and hydrological mecha-
nisms (e.g. root distribution models, canopy cover), land cover data are 
often used as surrogate datasets (Reichenbach et al., 2018). However, 
current land cover data are not at the resolution to account for the in-
fluence of space-planted trees in silvopastoral landscapes. Furthermore, 
simply representing individual trees as a point, mapping tree canopies, 
or using an arbitrary radius to define an area of influence of a tree, fails 
to acknowledge the spatial variation in the distribution and strength of 
roots in the soil as well as the influence on soil moisture. 

In New Zealand, erosion processes are very active due to steep slopes, 
weak sedimentary rocks, high annual rainfall, and relatively frequent 
high magnitude rainfall events (Hicks et al., 2011; Basher, 2013). New 
Zealand’s history of land management includes extensive deforestation 
for pastoral farming which has exacerbated erosion rates (Glade, 2003; 
Phillips et al., 2018). Given this setting, it is not surprising that most 
research on the impact of trees on landsliding in silvopastoral and 
agroforestry landscapes has been undertaken in New Zealand (England 
et al., 2020). Since the enactment of the Soil Conservation and Rivers 
Control Act 1941, which helped increase awareness for sustainable land 
management and soil conservation, spaced planting of trees has been an 
important erosion and sediment control measure (van Kraayenoord and 
Hathaway, 1986; Phillips et al., 2000, 2008; Basher et al., 2008, 2013), 
whereby poplars (Populus spp.) and willows (Salix spp.) are planted as 
young, unrooted stems (poles) at densities ranging from 20 to 200 trees 
ha− 1 (Wilkinson, 1999; Benavides et al., 2009; Kemp et al., 2018). The 
objective of this form of silvopastoralism is generally to protect infra-
structure and conserve soils to reduce sediment yields and improve 
freshwater health (Basher et al., 2020). Space-planted trees also offer 
shade, shelter, quality fodder (especially during drought periods), and 
carbon sequestration (McIvor et al., 2011). Dominati et al. (2014) 
quantified the long-term costs and benefits of space-planted trees in a 
pastoral farming context using an ecosystem services approach and 
found that despite the decrease in pastoral production below tree can-
opy, planting is economically beneficial in the long term due to the 
reduction in erosion risk and the increase in provision of ecosystem 
services including forage from trees, wood, provision of shade and 
shelter for animals, and net carbon accumulation in wood. 

Despite the widespread use of space-planted trees in New Zealand’s 
pastoral hill country, there has been relatively little experimental or 
quantitative work to establish their effectiveness in reducing erosion in 
relation to factors such as tree species, planting density, slope gradients, 
and there are no published studies on their measured effect on sediment 
yield (Douglas et al., 2009; Basher, 2013). Nor is there any information 

on their effectiveness over a range of different storm magnitudes. This is 
largely due to the lack of spatially explicit data on individual trees and 
their influence on slope stability. Therefore, it is difficult to determine 
the extent to which erosion and sediment control measures have tar-
geted slopes susceptible to landslide erosion and prioritized treatment of 
susceptible hillslopes. 

Root data collection for multiple species and age classes is time- 
consuming and costly, partly explaining the paucity of quantitative 
data on the effectiveness of space-planted trees on slope stability in 
silvopastoral landscapes (Hairiah et al., 2020). This study introduces an 
empirical method to fill the gap in scale between i) physical, 
process-based models that quantify root reinforcement for individual 
trees and slope stability at hillslope scale, and ii) landslide susceptibility 
modelling at regional scale using land cover data. The objectives are: 1) 
to delineate individual tree crowns (ITCs) at landscape scale and classify 
into dominant species classes found in New Zealand’s pastoral hill 
country; and 2) develop a spatially explicit tree influence model for each 
species class by means of inductive inference. The tree influence models 
represent the combined hydrological and mechanical influence of trees 
on slopes, which is inferred through the spatial relationship between 
individual trees and landslide erosion. 

2. Methods 

2.1. Study area 

The study area was chosen based on five criteria: i) availability of 
airborne LiDAR (Light Detection and Ranging); ii) recent occurrence of 
storm events that resulted in a high density of shallow landslides; iii) 
pastoral farming as the dominant land use; iv) spanning a range of rock 
types; and v) a significant history of soil conservation practices that has 
resulted in a silvopastoral landscape. Following an inspection of historic 
Google Earth imagery to examine evidence of widespread landsliding, 
an 843 km2 area was selected in the Wairarapa, located in the south-east 
of the North Island of New Zealand (Fig. 1). Approximately 92% of this 
area, or 776 km2, is used for pastoral farming. 

The study area is primarily underlain by unconsolidated, tectonically 
deformed Pliocene-age mudstone and fine siltstone (Fig. 1). Much of the 
area is covered in a mantle of loess. These soils have a dense subsoil zone 
of low permeability that is the failure plane for many landslides (De 
Rose, 2012). A band of limestone forms the central and south-western 
part of the study area. The terrain has low to moderate relief (<150 
m) that is intensely dissected, with narrow ridge and spur crests, hill-
slopes mostly between 15◦ and 35◦, and narrow valley floors. Significant 
areas of colluvium (landslide debris) have accumulated along the base of 
many hillslopes, and in mid- and upper-slope hollows. Mean annual 
rainfall is 1100 mm, characterised by winter maxima and summer 
droughts. Long duration, low intensity rainfall is typical with low daily 
rainfall totals. However, landslide-generating storms have occurred 
frequently since climatic records began in the 1880s. Most of these 
storms do not have particularly high storm or daily rainfall totals 
(100–200 mm) but often occur when antecedent moisture conditions are 
high (De Rose, 2012; Basher et al., 2018). 

The study area was affected by two storm events in March 2005 and 
July 2006, with a median recorded rainfall of 175 mm and 204 mm over 
48 and 72 h, respectively. These events triggered thousands of landslides 
across the entire study area. Three further storms, in late July 2006, 
October 2006, and June 2009, were more localised events recorded at 
Hikawera station in the south of the study area – the highest magnitude 
in 2009 with 197 mm in 24 h, with a resulting landslide distribution that 
was also localised to just part of the study area (Fig. 7). Shallow, rapid 
slides and flows involving soil and regolith are the most common types 
of landslides in New Zealand and consist of small scars (50–100 m2) and 
long narrow debris tails (Glade, 1998; Crozier, 2005; Basher, 2013). 
Such landslides are generally triggered either by single, high-intensity 
and -magnitude rainfall events or by low-magnitude rainfall events 
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following prolonged wet periods that led to high antecedent soil mois-
ture conditions (Basher, 2013). 

2.2. Landslide mapping 

To evaluate the influence of trees on slope stability at the study site, 
rainfall-triggered landslide scars were mapped. To do this for the storm 
events captured in this study, a semi-automated mapping procedure, 
using an object-based image analysis (OBIA) method was applied to 
identify and classify landslide scar features assumed to have been trig-
gered in the 2005 and later storm events in the study area (Fig. 2). The 
OBIA method combines image processing and GIS functions to delineate 
and classify homogenous objects (Blaschke, 2010; Blaschke et al., 2014). 

The primary advantage of this approach over manual delineation of 
scars is that it enables rapid mapping using a set of defined rules that 
ensures consistency across complete study areas. We used Trimble’s 
eCognition software and employed a knowledge-based ruleset (Hölbling 
et al., 2016; Smith et al., 2021) (Fig. 2). 

Landslide scars were classified in the 2010 imagery provided by 
Greater Wellington Regional Council, which is 3-band (RGB) optical 
imagery at 0.4 m ground space distance (GSD). Following a comparison 
with QuickBird II imagery from 30/01/2008, it was evident that the 
landslide scars triggered by the 2005 and 2006 rainfall events had not 
revegetated and could successfully be classified in the 2010 imagery. 
This visual inspection is supported by data on pasture dry matter pro-
duction on slip scars by Lambert et al. (1984) and Rosser and Ross, 

Fig. 1. Location of study area in Wairarapa, New Zealand, showing a range of rock types (New Zealand Land Resource Inventory) and location of study sites 1 and 2. 
Map projection is New Zealand Transverse Mercator (NZTM). 
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(2011), who found pasture production at ~20% of the yields produced 
on uneroded ground, which was estimated to increase to ~30% after 5 
years. There was a marked difference in the southern part of the study 
area, where scars triggered by the local event in 2009 were more clearly 
visible since revegetation of exposed regolith was not as advanced. 

The 2010 RGB imagery was resampled to 1 m – the resolution of the 
LiDAR DEM. Image objects were created using the multiresolution seg-
mentation algorithm based on spectral information of the imagery (i.e. 
identifying bright scars stripped of vegetation) and slope derived from 
the LiDAR DEM (i.e. to set topographic rules for realistic landslide ge-
ometries and slope locations). The landslide classification used two 
object levels in a multi-scaled segmentation approach, which organizes 
the objects into a hierarchy (Blaschke et al., 2014). The level 0 objects 
(L0) were created at the pixel level (1-m spatial resolution), whereby 
scale, shape and compactness parameters were optimized until image 
objects represented small landslide scars or components of larger land-
slides. The level 1 objects (L1) were generated through a second 
multi-resolution segmentation based on the L0 objects. This generally 
resulted in the delineation of individual paddocks/land parcels, which 
are related to the topology of the underlying L0 objects (Blaschke et al., 
2014). The advantage of this approach is that the characterisation of 
low-level objects is enhanced through consideration of their local 
environmental setting (contextual properties). This was achieved by 

calculating the ratio and the mean difference in brightness between L0 
and L1, which increases local contrast and removes significant errors 
(false positives/negatives) that occur when thresholds are set for com-
plete study areas. Thus, for the classification of landslide scars at L0, 
scars were defined using i) mean brightness >140, ii) a ratio to L1 mean 
brightness >1, and iii) mean slope >20◦. An automated procedure 
aimed at removing false positives by considering geometric (e.g. length, 
length/width ratio) and topographic (e.g. standard deviation of slope, 
elevation range) properties of image objects as well as objects less than 
20 square metres in size, since it was difficult to verify on-screen 
whether or not these small objects were landslide scars. Further 
object-based manual refinement of the classification was performed 
across the entire study area by selecting and removing falsely classified 
objects. The age of most of the landslide scars (4–5 years since failure) 
meant there was less local contrast to surrounding non-landslide pixels 
than would otherwise be expected, and consequently, an unusually high 
number of false positives were classified as landslides. Most of the false 
positives were associated with bright objects such as farm tracks, areas 
of dry pasture, or exposed stream beds. 27 objects identified as landslide 
scars with areas >1500 m2 were removed, as these were mostly com-
ponents of actively eroding gully systems. This resulted in a dataset of 
43,069 landslide scars. 

Fig. 2. Workflow for OBIA mapping of shallow landslide scars across study area.  
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2.3. Rural tree species classification 

Two farms were selected for mapping tree species to generate the 
ground data required for training the support vector machine (SVM) 
classifier (Fig. 1). Both farms have a history of landslide and soil erosion 
research activity (e.g. Lambert et al., 1984, 1993; De Rose, 2012; 
Douglas et al., 2013; Basher et al., 2018). Site 1 is a 1700-ha sheep and 
beef farm, located approximately 15 km east of Masterton, in a region of 
steep pastoral hill country underlain by erodible Tertiary siltstones, 
mudstones, as well as some limestone. Here, the original landcover was 
predominantly podocarp-hardwood native vegetation that was cleared 
between 1860 and 1890 (Lambert et al., 1984). Soil conservation works 
in the form of space-planted poplar, willow, and eucalyptus trees began 
in the late 1990s. While planting has been sustained since commence-
ment, the density of trees on hillslopes differs across the farm and is less 
than Site 2 (Fig. 3). 

Site 2 is a 462-ha block of a sheep and beef farm located at the upper 
catchment of the Waikoukou Stream, a tributary of the Wangaehu, and 
has been continuously active in soil and water conservation since 1956. 
The main objectives of these conservation works were to intensively 
plant slopes and gullies prone to severe erosion using poplars, willows, 
and protected seedlings, install regulating dams to restrict peak flows 
and sediment loads entering waterways, and establish conservation 
woodlots in areas of severe gully and earthflow erosion. The original 
land cover likely consisted of light bush, kānuka, and fern with heavier 

podocarp species in the wider valleys. Several bush remnants of kānuka 
remain distributed across the farm. Soils are silt loam derived from 
mudstone and are generally typical of the soils found in the wider study 
area. 

Tree mapping was carried out in the field at Sites 1 and 2 following 
two primary objectives: 1) to identify tree species to be used as samples 
in the tree species classification, and 2) to count the number of stems in 
selected densely-planted stands across different species classes 
(Table 1). Trees were mapped on printed sheets of aerial photography 
(2013/14) at a scale of 1:2500. Site visits found four dominant classes of 
tree species in paddocks used for pasture: poplar (Populus spp.) and 

Fig. 3. Space-planted trees (kānuka, poplars and willows on slopes, cabbage trees lower right) at Sites 1 (above) and 2 (below), showing a range of species: Pinus 
radiata, poplars/willows, kānuka, eucalyptus. Sustained efforts over prolonged periods have resulted in higher density of planting at Site 2. 

Table 1 
Tree samples (count, %) used for rural tree species classification.   

Eucalyptus Kānuka Poplar/ 
willow 

Conifer Other Total 

Site 1 316 1387 2225 132 909 4969 
Percentage of 

total 
6% 28% 45% 3% 18% 100% 

Site 2 632 1801 1598 1169 169 5369 
Percentage of 

total 
12% 34% 30% 22% 3% 100% 

Total 948 3188 3823 1301 1078 10338 
Percentage of 

total 
9% 31% 37% 13% 10% 100%  
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willow (Salix spp.) varieties, eucalyptus (Eucalyptus spp., e.g. Eucalyptus 
globulus), kānuka (Kunzea spp.), and Pinus radiata (hereafter referred to 
as conifers) (Table 1). These species made up 90% of all species mapped 
at the two sites. These four classes therefore formed the basis of the rural 
tree species classification. Other less common species mapped include 
acacias, other coniferous species such as cedar, Douglas fir, and spruce, 
and species native to New Zealand such as tōtara, (Podocarpus totara) 
and cabbage trees (Cordyline australis). Kānuka are often found with 
other species such as mānuka. Due to their greater height (10–20 m), 
kānuka eventually forms the dominant canopy (Allen et al., 1992; Bergin 
et al., 1995; Smale et al., 1997; Mackay-Smith et al. (submitted), 
resulting in homogenous mature kānuka stands as observed at sites 1 
and 2. 

In 2013 and 2014, the Wellington Regional Council commissioned a 
LiDAR survey with a minimum point density of 1.3 pt/m2, a mean of 5.8 
pt/m2, and a vertical accuracy of ±0.15 m over the Wellington region 
(812,000 ha). These high-frequency LiDAR pulses are reflected by tree 
canopies (first return) and other surfaces, including leaves, branches and 
ultimately the ground (generally the last return). The travel distance of 
the different returns is then calculated as a function of return time, 
which provides very accurate point measurements of elevation. These 
point clouds can be classified and interpolated to generate digital terrain 
models (DTM) and digital surface models (DSM). The difference be-
tween these elevation models is a canopy height model (CHM) (Lefsky 
et al., 1999). Since the advent of LiDAR point clouds and digital eleva-
tion models (DEMs), many algorithms have been developed for auto-
mated delineation of ITCs (e.g. Bunting and Lucas, 2006; Dalponte and 
Coomes, 2016; Zhen et al., 2016; Pirotti et al., 2017). Here, we used the 
pycrown algorithm developed by Zörner et al., (2018) to delineate ITCs 
in the study area using the LiDAR-derived DTM and CHM at 1 m GSD 
(Fig. 4). Pycrown first identifies local maxima in a circular moving 
window, which represent treetops in the CHM. These local maxima are 
used as the seeds from which ITCs are grown, whereby growth is 

restricted by four defined thresholds: i) a threshold below which a pixel 
cannot be a tree (th_tree); ii) a growing threshold to determine whether a 
pixel is added to the tree crown, which must be greater than the mean 
height of the current crown multiplied by this value (th_seed); iii) a 
second growing threshold, whereby a pixel is added to the crown if its 
height is greater than the current mean height of the region multiplied 
by this value (0–1) (th_crown); and iv) a maximum value of the crown 
diameter of a detected tree (max_crown). We used stem counts of 
different species from the field to optimize parameterization of pycrown 
for the trees in our study area. We refer to Zörner et al., (2018) for a 
more detailed explanation of parameterization. 

The most important parameter of pycrown is the window size used 
for identifying treetops with local maxima, since it has significant im-
plications on the number of seeds identified and, thus, crowns delin-
eated. Besides th_tree, the remaining thresholds determine the final 
crown geometry. Experimentation with three window sizes (3, 4, 5) 
found that 5 m yielded optimal results for space-planted trees. There-
fore, a radius of 5 m was chosen, as well as default thresholds for crown 
growth of 0.45 (th_seed) and 0.55 (th_crown). The radius max_crown was 
set to 8 m due to a slight spatial incongruence between the LiDAR 
dataset and the orthophotos, which is minimal at nadir and reaches a 
maximum offset with increasing off-nadir viewing angles. By limiting 
the crown radius, the calculation of crown statistics (brightness, NDVI) 
using the orthophotos (Fig. 4) is less likely to include adjacent pixels not 
associated with the crowns (e.g. pasture). 

Through overlay of field-based species mapping with ITCs in a GIS 
environment, ITCs within Sites 1 and 2 were labelled according to the 
mapped species. Besides tree height and crown area derived from LiDAR 
data, zonal statistics on spectral data (mean, standard deviation of the 
mean (SD)) were calculated for each tree crown in the study area using 
freely available high resolution multi-spectral aerial photography from 
three surveys flown in 2010, 2013/14 and 2016/17 (Table 2) and used 
as predictors in the SVM model (Fig. 4). By including a multi-temporal 

Fig. 4. Workflow and data inputs for rural tree species classification using an SVM model.  
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dataset, seasonal variations in canopy characteristics improve the 
capability of the model to differentiate species. Furthermore, we 
hypothesised that including SDs as predictors would improve the model, 
since conifers and poplars/willows exhibit less spectral variance in the 
canopy than kānuka and eucalyptus. This compiled dataset was used as 
training and test data for an SVM model using the caret package (Kuhn, 
2008) in R to develop a rural tree species classification of ITCs across the 
entire study area. SVM was originally developed as a binary classifier 
and later extended for multi-class classifications, and routinely out-
performs more conventional approaches (Dalponte et al., 2012; Fass-
nacht et al. 2014, 2016; Dymond et al., 2019; Torabzadeh et al., 2019). 

Using all 9260 tree crowns, we explored the best combinations of 
model inputs by performing 10-fold cross-validation, in which the data 
are randomly partitioned into ten equal sized subsamples and each 
subsample is used to test the remaining nine subsamples assigned to 
training. The 10-fold cross-validation was repeated 5 times with 
different random selections of subsamples to get an average overall 
classification accuracy, which we aim to maximise. For the identifica-
tion of the best performing variables, parameters for cost penalty (=10) 
and σ (=0.05) were kept constant with a radial kernel function (RKF). 
Variable importance was evaluated using all training samples and 
receiver operating characteristic (ROC) curves and calculation of the 
area under curve (AUC). For multi-class outcomes, the problem is 
decomposed into all pair-wise problems and the AUC is calculated for 
each class pair. For a specific class, the maximum area under the curve 
across the relevant pair-wise AUCs is used as the variable importance 
measure. An AUC value of 0.5 corresponds to performance no better 
than a random guess, while an AUC of 1 would indicate perfect classi-
fication. Following variable selection, the final model tuned the hyper-
parameters of cost penalty and σ to achieve best performance, whereby a 
range of values for cost penalty (1:15) and σ (= 0.01,0.05,0.1) were 
tested. Model performance is characterised by overall accuracy (%) 
following 5 repeats of 10-fold cross-validation, and Cohen’s Kappa, 
which accounts for expected accuracy resulting from uneven sample 
sizes across the classes (Cohen, 1960). 

2.4. Empirical tree influence models on slope stability 

The landslide database and tree classification were used in an 
empirical approach to quantify the influence of an individual tree on 
landslide activity. The method determines whether landslide scars occur 
preferentially close to or remote from trees. The overarching hypothesis 
is that by using spatial relationships and accounting for variability in the 
influencing factors, the influence of trees on landslide erosion may be 
inferred (Hawley and Dymond, 1988; Romeijn, 2009). Moreover, we 
assert that observations and patterns in the spatial distribution of tree 

location and landslide erosion allow the physical properties of trees that 
govern slope stability to be inferred. This supposition may be verified 
through existing knowledge of physical properties of trees and root 
systems and the mechanisms by which trees increase slope stability (see 
section 4.2). The method builds on that proposed by Hawley and 
Dymond (1988), whereby the spatial relationship between landslide 
scars and trees is quantified as a function of distance. Their study was 
limited to a single hillslope, single species, and treated as uniform in 
terms of slope stability in the absence of trees. Given that the properties 
of trees will vary in response to their environmental setting, observa-
tions over large areas are essential to infer the average tree influence. 
The high magnitude rainfall events between 2005 and 2010 triggered 
thousands of shallow landslides which span a variety of environmental 
gradients and will increase the likelihood for patterns to emerge from 
observations at landscape scale. 

For each class (j) of the four dominant tree species classes, the tree 
influence model Mj is developed as a function of soil surface eroded by 
landsliding f(r), as follows: we denote the distance from the nearest tree 
as r and b = f(r) is the fraction of soil eroded (Fig. 5). We will examine 
the relationship between b and r, whereby the effect of the trees is ex-
pected to decrease with increasing r until f(r) approaches an asymptote 
b = constant at a larger r. This asymptotic value of b is denoted by bc and 
the value of r where b = constant denotes the radius of the maximum 
distance of influence of the “average” tree, rmax. Note, all reference to 
eroded soil surface in this analysis is planar in nature, not volumetric. 

Here, we specifically wish to isolate the influence of individual trees 
on slope stability in pastoral hill country, which we define using land 
cover classes from the NZ Land Cover Database of New Zealand (LCDB 
v4.11) and a slope threshold. LCDB is a manually-mapped land cover 
classification with a minimum area unit of 1 ha, which means most 
silvopastoral landscapes are classified as ‘Grasslands’ (85.4% of study 
area) or depending on the density of trees, as one of the following 
classes: ‘Broadleaved Indigenous Hardwoods’ (1.1%), ‘Deciduous 
Hardwoods’ (1.3%), ‘Gorse and/or Broom’ (0.3%), ‘Mānuka and/or 
Kānuka’ (3.9%). Exotic forests (3.8%), indigenous forests (0.9%), and 
‘Short-rotation cropland’ (2.6%) were removed. In addition, trees were 
excluded if located on slopes where landsliding was unlikely to occur, 
defined as slopes below the 1st percentile in the slope density distribu-
tion of the landslide inventory, which is 17.5◦ (Fig. 6). Thus, 92.3% of 
the study area is classified as a land cover typical of pastoral hill country, 
and 52.0% of the study area exceeds the threshold of 17.5◦, resulting in a 
slope-pasture mask of 377.8 km2. Therefore, according to this simplified 
definition, 44.8% of the study area is pastoral hill country. To isolate the 
influence of a single tree at a given pixel, areas of potential co-influence 
are removed by creating 15-m buffers around tree points and removing 
intersecting areas (Fig. 5). A 15-m radius centred on a tree point, and its 
vertical below-ground extension, is a conservative estimate of the 
ground area likely to contain most roots and affect slope stability (e.g. 
Douglas et al. (2013) used a 10-m radius). Tree points represent the 
centroid of delineated tree crowns generated by pycrown, hereafter 
referred to as treetops. Further, a 15-m buffer is drawn around all trees 
not belonging to species class j in an iterative process to create a 
species-specific mask to treat each class independently (Fig. 5). 

Two final steps were involved in the calculation of the empirical tree 
influence models on slope stability (TIMSS) for each of the four species 
classes. A raster was generated using a euclidean distance algorithm, 
representing the distance to the rasterized treetops at 1 m GSD. Land-
slide scars were merged using unique distance codes, resulting in a raster 
with values indicating distance from treetop and presence/absence of 
landslide scars. The fraction of soil surface eroded as a function of dis-
tance from tree could then be calculated for each tree species using the 
number of spaced trees within the slope-pasture mask and landslide 

Table 2 
Inputs derived from LiDAR data and optical imagery used in rural tree species 
classification.  

Data Model inputs Variable 
abbreviation 

Regional LiDAR 2013  1 Tree height (m)  
2 Tree area (m2) 

TH 
Area 

RGB 2010 imagery, 0.4 m 
GSD  

3 Mean brightness  
4 Standard deviation 

brightness 

br_10_m 
br_10_sd 

RGBI 2013/14 imagery, 0.3 
m GSD  

5 Mean brightness  
6 . Standard deviation 

brightness  
7 Mean NDVI  
8 Standard deviation NDVI 

br_13_m 
br_13_sd 
ndvi_13_m 
ndvi_13_sd 

RGBI 2016/17 imagery, 0.3 
m GSD  

9 Mean brightness  
10 Standard deviation 

brightness  
11 Mean NDVI  
12 Standard deviation NDVI 

br_17_m 
br_17_sd 
ndvi_17_m 
ndvi_17_sd  

1 https://doi.org/10.7931/L17H3. 
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scars (Table 5). 
A nonlinear least-squares logistic regression model was used to fit 

f(r) for each of the four species classes (Bates and Watts, 1988). The f(r)
curves are sigmoidal in shape, which has been found in other root dis-
tribution models, e.g. in relation to root density (Sakals and Sidle 2004) 
and root reinforcement (Schwarz et al., 2012). The logistic growth 
function is defined as: 

f (r)=
bc

1 + exmid− r
scal

(1)  

where bc is a parameter representing the asymptote; xmid is a parameter 
representing the r value at the inflection point of the curve; and scala 
scale parameter on the input axis. 

The Selfstart function SSlogis in R first evaluates the logistic function 
and its gradient, then creates initial estimates of the parameters bc, xmid, 
and scal, which are fed to the nonlinear function to find the best-fit lo-
gistic equation. Goodness of fit was calculated using R-squared, and 95% 
confidence and prediction intervals were calculated for each model. The 
maximum effective distance rmax is defined as the point where r =

.95bc. 
Thus, for each species class j, the TIMMS (Mj) are defined as the 

reduction in soil surface eroded, expressed as: 

Mj = bc − f (r) (2) 

Inserting f(r) from equation (1), and following normalization to 0–1, 
Mj is quantified as: 

Mj = 1 −
1

1 + exmid− r
scal

(3)  

where Mj is the species-specific mitigation at a given pixel for an indi-
vidual tree. When applied spatially, the influence of more than one tree 
is assumed to be additive, whereby the upper bound of trees contrib-
uting to slope stability at a given pixel is assumed to be 4. The TIMSS are 
thus a 2-dimensional representation of biophysical erosion and sediment 
control at 1 m GSD. 

3. Results 

3.1. Landslide inventory 

The final landslide dataset consists of 43,069 landslide scars that 
were triggered by the 2005 and later storm events (Fig. 7). Median scar 
area is 49 m2, mean 82.1 m2, which is consistent with findings of pre-
vious studies (De Rose, 2012; Betts et al., 2017; Smith et al., 2021). The 
bands of limestone within the study area are notably absent of landslide 
scars (Figs. 1 and 7). The highest density of scars is found in the southern 
part of the study area, where high-magnitude rainfall events in 2005, 
2006 and 2009 (72 h totals of 197–283 mm) coincided with the steep 
and highly susceptible terrain, underlain by mudstone and fine siltstone. 
Mean slope of landslide scars is 32.2◦, with a standard deviation of 5.1◦

(Fig. 6). 

Fig. 5. Illustration of method used to determine the influence of individual trees on slope stability as a function of distance (r) – here for the poplar/willow (P/W) 
class: The fraction of soil eroded is calculated at 1-m intervals from P/W trees. To isolate the effect of individual P/W trees, a mask is used to remove 1) 15-m buffers 
around all non-PW trees, 2) intersecting 15 m buffers of P/W trees, and 3) slopes less than 17.5◦. 
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3.2. Rural tree species classification 

The results of the SVM rural tree species classification are dependent 
on the performance of both ITC delineation using pycrown and the 
species classification using SVM and selected set of predictors (Table 2). 
In dense stands of kānuka and coniferous species, the number of trees 
was consistently underestimated (Table 3). This is partially explained by 
reasonably smooth canopies in areas of dense kānuka. Reducing the 
window size to a 3-m radius resulted in a slight improvement in the 
kānuka (0.39 of field counts; compare Table 3) and conifer (0.47) classes 
but led to an overestimation in the eucalyptus (1.07) and poplar/willow 
(1.15) classes. 

In terms of performance of predictors, variable selection for the tree 
classification was informed by the pair-wise ROC curves and calculation 
of the AUC scores. Tree height (TH) was the sole variable to score 
consistently less than 0.6 across all species classes (Fig. 8). Removal of 
TH resulted in a marginal improvement of the model (0.1%) and con-
firms TH as a poor predictor (Table 4). The Kappa score also increased 
from 0.8879 to 0.8895. The next lowest AUROC score was the SD of 
NDVI from 2013 imagery (ndvi_13_sd). However, removal of ndvi_13_sd 
led to a reduction in mean accuracy. The ranking of variables using 
AUROC across classes shows there is no further variable that is clearly 
under-performing and potentially reducing the predictive power of the 
model. However, a correlation matrix of all variables found a strong 
correlation (− 0.91) between mean brightness (2013) and mean NDVI 
(2013). Yet, removal of mean brightness (2013) resulted in a significant 
reduction of accuracy, and therefore contributes to the performance of 
the classifier in interaction with mean NDVI (2013). Therefore, the final 

SVM model includes 11 predictors following removal of TH (Table 4), 
and trained on 9260 tree crowns from sites 1 and 2. A final accuracy of 
92.6% and a Kappa value of 0.89 proves the SVM model to be an 
excellent classifier for these tree species classes. 

Table 5 presents the results of the classification. Trees that fall 
outside the pasture mask are either forestry blocks, areas of scrub, or 
indigenous vegetation. Thus, the dominant species in areas of pasture 
(776 km2) is kānuka (373,000 trees), followed by poplar and willow 
species (207,000). When considering the underestimation of pycrown 
for the kānuka and conifer species, the corrected number is likely to be 
approximately 1.07 million kānuka, and 111,000 conifer stems. Inter-
estingly, a large proportion of kānuka (76.4%) are located on steep 
slopes (>17.5◦), where landslide erosion is more likely (Fig. 6). Since 
kānuka is often found alongside mānuka, and difficult to distinguish 
spectrally, the classified kānuka in the study area includes mānuka. A 
lesser proportion of poplar and willows (52.9%) and eucalyptus trees 
(66.9% of the 60,500) are found in the same slope category. 

3.3. Empirical tree influence models on slope stability 

Table 5 lists the number of trees used to develop the TIMSS for each 
of the four species groups. According to the results of the classification, 
kānuka is the most dominant species in pastoral hill country (slopes 
>17.5◦) in the study area, making up 62% of all trees, or 79% using the 
correction factor. Of the 262,000 poplars and willows, 109,000 are 
within the pasture-slope mask, of which 25,000 are spaced at a mini-
mum of 15 m and were used to isolate the influence of an individual 
poplar/willow on slope stability. Since most conifers (Pinus radiata) are 
found in forestry blocks or shelter belts located on farms within the 
study area, merely 1% of all pines and 7% of eucalyptus are located as 
space-planted trees on slopes in areas of pasture. This underscores the 
need for a large study area to successfully use the inferential method, 
since different species are planted at different densities and locations 
depending on their purpose. 

The results of f(r)and Mj for the four species classes are shown in 
Figs. 9 and 10, respectively. The points in Fig. 9 are the measured mean 
values of fractions of eroded soil at each 1 m increment away from the 
trees. The four non-linear models were then used to predict the 
maximum distance of influence and are plotted in Fig. 9, as follows: A) 
poplar/willow 20 m; B) kānuka 17 m; C) conifer 17 m; and D) eucalyptus 
13 m. The asymptotic value bc is different for each of the four species 
groups, which reflects the local environment in which the trees selected 
for the analysis are predominantly located. Based on Fig. 9, eucalyptus, 
poplars, and willows are situated on slopes with higher rates of erosion 
than kānuka and coniferous species, and consequently have larger 
asymptotic values. 

Fig. 10 shows the results of the normalized reduction in eroded soil 
bc − f(r), i.e. Mj. Where the layout of trees is such that more than one tree 
contributes to slope stability at a given location, the influence on slope 
stability is assumed to be additive. Therefore, TIMSS values can exceed 1 
when applied spatially (Fig. 12). Eucalyptus trees have the greatest 
mean influence between 0 and 5 m from trees, but the least reach, with a 
maximum effective distance of 13 m. Poplars and willows have the 
greatest maximum effective distance of 20 m, and the tree influence 
decreases more slowly with increasing r compared to the other three 
curves. The influence on slope stability of the conifer class decreases 
rapidly with increasing r, reaching a value of 0.3 at 9 m, and a maximum 
effective distance of 17 m. Kānuka has the same maximum effective 
distance as conifers, yet reaches an TIMSS value of 0.3 at 10 m. In total, 
43.8% of the area (165.3 km2) comprising pastoral hill country in the 
study area has increased slope stability due to the presence of trees, i.e. 
an TIMSS value greater than 0. The remaining 56.2% of pastoral hill 
country (212.5 km2) are untreated slopes that are susceptible to land-
slide erosion. 

Fig. 6. A: Density plots of shallow landslide scar slopes and slopes where trees 
are located on pasture. B: Density plots of slopes according to species class 
within pasture mask. The vertical line represents the 1st percentile (17.5◦) of 
landslide slopes, which is the cut-off used for tree selection. 
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4. Discussion 

4.1. Rural tree species classification 

Inclusion of both mean and SD brightness/NDVI were shown to be 
good predictors and enhanced the discrimination between species 
classes. Yet, tree height was found to be a poor predictor of species. This 

can be explained by the significant variation within species classes and 
similar mean tree heights across classes, which is likely due to a range of 
tree ages (Fig. 11). The overall accuracy of 92.6% using k-fold cross- 
validation with the entire dataset of 9,260 tree crowns is a good mea-
sure of expected accuracy achievable in the wider study area. Yet, ac-
cording to the data obtained in the field, approximately 10% of mapped 
trees in the study area do not fit into the four dominant species classes 

Fig. 7. Distribution of storm-triggered landslides (red polygons) mapped in this study, and the rainfall magnitude of storms > 120 mm for the period March 2005 to 
January 2010. The beginning date of the events which recorded the highest rainfall during this period are labelled at each rain gauge. The extent of farms (sites 1 and 
2) used for tree species field mapping is also shown. Insert A: Distribution of landslide scar size (m2), including vertical lines of median (49 m2) and mean (81.1 m2); 
Insert B is the extent of yellow frame at Site 1; Insert C is the extent of yellow frame at Site 2. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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used here (Table 1). Accounting for this source of error, the overall 
classification accuracy is likely to be 83.3% since predictions can only be 
made with the classes available to the SVM classifier. To further improve 

the model, further training samples from additional classes are needed. 
This is the first attempt at tree species classification of ITCs at 

landscape scale in New Zealand. In their review on tree species classi-
fication, Fassnacht et al. (2016) acknowledge the significant challenge 
of developing classifications over large geographic extents. Field counts 
of stems showed that LiDAR based delineation of individual tree crowns 
with pycrown (Zörner et al., 2018) produced very accurate results for 
space-planted poplar, willow, and eucalyptus trees. However, since 
kānuka is most often found in relatively dense stands with little vari-
ability in tree heights, we counted an average of 2.86 stems in the field 
for every pycrown-delineated tree crown. Coniferous species are often 
planted as shelterbelts, or as relatively small, densely planted blocks (e. 
g. 2 ha). Their close spacings present a similar difficulty for accurate tree 
crown delineation, with an average of 2.94 stems per delineated tree 
crown. To improve discrimination of individual kānuka crowns, 
increasing the resolution of the LiDAR DEMs (e.g. 0.5 GSD) may help. 
While this would improve the gradient between trees, it can also result 
in an overestimation of tree crowns, as subcomponents of crowns such as 
individual branches, can be delineated as separate objects. Recent ad-
vances have been made using machine learning to integrated crown 
delineation from LiDAR with optical imagery and provide a highly 
adaptable means for accurate delineation across multiple forest types 
(Weinstein et al., 2019, 2020a, 2020b). However, on pastoral land, co-
nifers only make up a small proportion of all trees (111,000 ± 16.7%), or 
1.4/ha. As to be expected, eucalyptus is the least common species class, 
accounting for only 4% of trees in pastoral land in the study area. Poplar 
and willow species amount to 14%, and 11% on hillslopes, making up 
109,000 trees in pastoral hill country, which amounts to an average of 
3.2 sph. Poplars and willows are therefore the most abundant exotic 
species (51% of exotics) that have been intentionally planted for erosion 
and sediment control. 

A somewhat unexpected finding is the dominance of kānuka in the 
study area, which consists of original bush remnants and natural re-
generated trees. Kānuka makes up 79% of trees in pastoral hill country 
in the study area, averaging 24.1 sph following correction (Table 6). 
However, only 19% of these kānuka are spaced more than 15 m apart 
(Table 5), so the majority are growing in dense patches, which promotes 
slope stability, but likely reduces pasture productivity. Kānuka are 
successional species and are among the first to colonise marginal land, 
including eroded hillslopes (Smale et al., 1997). Indeed, 76.6% of the 
kānuka on pastoral land are on susceptible hillslopes (>17.5◦) – which is 
a large proportion compared to 52.7% of poplars and willows on pas-
toral land (Table 6; Fig. 6). Despite being abundant in pastoral hill 
country, research on the impacts of kānuka on landslide erosion are 
limited (Watson et al., 1995, 1999; Ekanayake et al., 1997) and mostly 
have high density stands of naturally reverting kānuka and mānuka as 
the object of their investigation – as opposed to widely spaced, 

Table 3 
Pycrown calibration results, and parameters used: Window size (ws); Hmin – 
threshold below which a pixel cannot be a tree; th_seed – Growing threshold 1; 
th_crown – Growing threshold 2; Maximum crown value of the crown diameter.  

Species class Field count pycrown count Proportion of field count 

Conifer 693 238 0.34 
Kānuka 278 97 0.35 
Eucalyptus 341 329 0.96 
Poplar/willow 1179 1174 1.00 
Other 239 97 0.41 
Total 2491 1838 0.74 
pycrown parameters: ws 5, Hmin 1.5, th_seed 0.45, th_crown 0.55, max_crown 8  

Fig. 8. Variable importance using AUROC for selection of best predictors. An 
AUC of 1 would indicate perfect classification, while an AUC score of 0.5 
equates to performance no better than a random guess. See Table 2 for inter-
pretation of abbreviated variable names. 

Table 4 
Classification accuracy following 5x 10-fold cross-validation (σ = 0.05, cost 
penalty = 10) with different input variables. Accuracy of the final model was 
improved following extensively tuned (best model: σ = 0.05, cost penalty = 15) 

Table 5 
Tree selection for tree influence models.   

Eucalyptus Kānuka Poplar/ 
willow 

Conifer Total 

Total number of 
trees in study 
area 

77,920 405,649 261,656 118,631 863,856 

Number of trees in 
pastoral land 

60,524 372,579 206,773 37,614 677,490 

Number of trees in 
pastoral hill 
country 

40,508 285,251 109,015 22,307 457,081 

Number of trees 
spaced >15 m 

5476 53,974 25,006 1429 85,885 

Trees selected of 
total (%) 

7% 13% 10% 1% 10% 

Area of species- 
specific mask 
(km2) 

243.7 279.5 266.1 252.1 –  
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low-density kānuka. 
Investigating landslide densities in reverting kānuka and mānuka, 

Bergin et al. (1995) found landslide damage to 10-year-old stands was 
estimated to be 65% less than that sustained by pasture and 90% less in 
20-year-old stands, and almost 100% in still older stands. They also 
found a relationship between stem density and age, with young stands of 
<10 years age typically containing 20,000 sph and older stands 
(30–40-year age class) 3000 sph. Bergin et al. (1995) further note that 

under-stocked stands gave a reduction in landsliding comparable with 
fully stocked stands of similar age. This indicates that thinning kānuka 
stands on hillslopes may be a reasonable erosion mitigation strategy to 
both increase pasture productivity while maintaining increased levels of 
slope stability. Furthermore, these findings challenge the common 
perception of kānuka as a weed and the related scrub-clearing method 
aimed at increasing pasture productivity (Allen et al., 1992). In com-
menting on the practice of kānuka clearance, Norton et al. (2020) 

Fig. 9. For the four species classes A) poplar/willow, B) kānuka, C) conifer, and D) eucalyptus: Mean fraction of eroded soil f(r) at distance (m) from tree, fitted using 
non-linear logistic model SSlogis with 95% confidence (red) and prediction (grey) bands. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 10. For the four species classes conifer, eucalyptus, kānuka and poplar/willow: Normalized mean tree influence Mj (0–1) for an individual tree, as reduction in 
eroded soil bc − f(r). Vertical lines show the maximum effective distance of 13 (Eucalyptus), 17 (conifer, kānuka) and 20 (poplar/willows) meters. 
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suggest landowners need to be better incentivised to promote land 
management practises that retain and enhance biodiversity outcomes. 
Results of this study can inform the densities required to achieve added 
slope stability, which is discussed in the following section. 

4.2. Interpretation of empirical tree influence models 

Further developing a method first introduced by Hawley and 
Dymond (1988), we have demonstrated an alternate approach to 
existing physical root distribution models aimed at generating a tree 
influence layer for the dominant species found in New Zealand’s pas-
toral hill country (Fig. 12). Such layers can subsequently be incorpo-
rated into landslide susceptibility analyses to quantify the 
species-specific reduction in probability of landsliding achieved due to 
the presence of space-planted trees and pre-existing woody vegetation 
such as kānuka. Thus, we aim to fill the gap in scale between physical 
models that quantify root reinforcement for homogenous tree stands, 
and landslide susceptibility modelling at regional scale that commonly 
uses land cover data as a proxy for the effect of the hydrological and 
mechanical influences of woody vegetation. It is important to note that 
the normalized TIMSS are a relative measure of individual tree influence 
on slope stability and, besides the distribution of the curves, are not 
directly comparable. For a given location, a value of 1.0 for the poplar 
and willow TIMSS will equate to a greater increase in soil shear strength 
than a value of 1.0 in the conifer TIMSS since the magnitude of increase 
in root reinforcement differs due to variations in the tensile strengths of 
root fibres and resulting soil-root frictional interactions (Schmidt et al., 
2001; Schwarz et al., 2010a,b). 

Future research is needed to quantify differences in the magnitude of 

TIMSS by: i) calibration using published datasets of tensile strength 
measurements, such as the mean live-root wood tensile strengths of 
common indigenous, plantation and scrub species by Watson and Mar-
den (2004); or ii) landslide susceptibility assessments, which can 
quantify the relative contribution of the four different TIMSS as a 
reduction in the probability of landslide occurrence. Additionally, the 
TIMSS have potential to be further split by tree height as a proxy for age 
(Fig. 11), since the influence of trees on slope stability increases with 
above- and below-ground biomass growth. If successful, this would 
allow the tree influence on slope stability to be predicted based on 
allometric variables for each species class, which would provide a more 
nuanced representation of added soil shear strength due to trees. 

The discussion thus focuses on the shape and maximum distance of 
the TIMSS curves (Fig. 10). Root distribution data from extractions and/ 
or models are limited for comparison purposes. Yet, we found very 
similar relationships expressed in the TIMSS to existing root distribution 
models for similar species (Abernethy and Rutherfurd, 2001; Sakals and 
Sidle, 2004; Schwarz et al., 2012, 2016). The model developed by Sakals 
and Sidle (2004) to assess the spatial variability of root cohesion based 
on a calibration of measured root cohesion from a Douglas-fir stand of 
20 root systems found the relationship between normalized root den-
sities and root influence radii to be sigmoidal in shape, differing slightly 
between two age groups of trees. This suggests the TIMSS have potential 
transferability to other species and environmental settings, where the 
representation of individual trees for landslide susceptibility modelling 
is desired, e.g. in agroforestry landscapes (van Noordwijk et al., 2019; 
Hairiah et al., 2020). 

A further comparison can be made to the root-bundle model cali-
brated by Schwarz et al. (2016) using two root distribution datasets of 
fully excavated poplars from Gisborne and samples from 20 trenches at a 
site near Palmerston North, New Zealand, planted in a range of high 
densities (89–237 sph) according to a Nelder planting design (Phillips 
et al., 2014). The results were used in slope stability calculations to 
quantitatively evaluate the mechanical stabilization effects of spaced 
trees on pastoral hill country. The maximum lateral root spread was 
reported as 13.3 m for 2-year-old poplar species in the Gisborne site, and 
estimated as only 4.2 m for the high-density stands at the Palmerston 
North site. The modelled spatial root reinforcement curve in the 
root-bundle model used a Weibull survival function, which is similar to 
the non-linear logistic regressions fitted for the TIMSS. However, it is 
clear there are significant differences between the maximum effective 
distance of poplars/willows modelled by Schwarz et al. (2016) and that 
observed in the TIMSS, which can be explained by considering: i) the 
influence of different environmental conditions as demonstrated by 
lateral root growth of 1–2-year-old trees at the flat, irrigated site with 
free draining alluvial soils exceeding that of the 10-year-old trees on 
5–20◦ slopes at the Palmerston North site with silt-loam soils featuring 
various mottles and concretions in the sub-soil; ii) different tree den-
sities and sampling methods (full excavations versus trenches), may 
have also contributed to the large difference found between their two 
sites; iii) the hydrological influence was not quantified by Schwarz et al. 
(2016), which may partly explain the differences from the maximum 
distance observed in the TIMSS; and iv) the average age of poplars and 
willows in our study area in the Wairarapa will likely exceed the age of 
trees for which root data is available for comparison purposes (e.g. 
McIvor et al., 2008; 2009; Schwarz et al., 2016). 

Most of the poplar and willow trees mapped at Sites 1 and 2 were 
planted in the 1980s to early 2000s, with a mean tree height of 13.7 m 
(Fig. 11). While there are no published data of root densities of fully 
mature, widely-spaced trees, a comparison with the largest dataset of 
full excavations of poplars, documented by McIvor et al. (2008, 2009), 
can further help with an interpretation of the TIMSS. Based on their 
observations of ‘Veronese’ poplar clones aged between 5 and 12 years, 
they found maximum lateral root distance extended up to 14 m. At 14 m, 
the poplar and willow TIMSS is 0.2. The remaining difference in f(r)
where 14 < r < 21 may be attributable to both the younger age of 

Fig. 11. For the four species classes at Sites 1 and 2 combined: A) Density plots 
and B) boxplots of tree heights with median (solid line) and mean (dashed 
line) shown. 
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excavated trees by McIvor et al. (2009) and the hydrological influence of 
trees that modifies water infiltration and soil moisture content (Phillips 
and Marden, 2005; Zillgens et al., 2007; Stokes et al., 2009; Gonzale-
z-Ollauri and Mickovski, 2017). Even though these excavations were 
undertaken for young trees, they do support the observation that mature 
poplars and willow trees have a maximum effective distance on slope 
stability of about 20 m. Further experimental research and root data 
collection of fully mature poplar and willow trees are required to 

confirm the findings of this study. However, as was found by Schwarz 
et al. (2016), the challenge associated with measurements taken from 
excavations is the high variability in root distributions within single 
species due to varying environmental constraints. McIvor et al. (2009) 
found soil depth and associated water storage capacity to be likely 
limiting factors for growth and root development. There were also in-
dications that terrain morphology influenced the root morphology with 
roots extending further uphill on steeper slopes. 

Fig. 12. A: For an area at Site 2, empirical tree influence models on stability for the four species classes: conifer, eucalyptus, poplar/willow and kānuka, non- 
susceptible pastoral land (defined by slope threshold of 17.5◦), and untreated pastoral hill country; B: Regional multispectral orthophotos (2010) showing land-
slide scars mapped in imagery. Red frames in A and B show extent of Insert C: Illustration of landslide causation: though trees contribute to slope stability, they do not 
always prevent landslide erosion – a reflection of a multivariate problem. Note, the influence of more than 1 tree at a given location is assumed to be additive, which 
is why values exceed 1. Map projection is New Zealand Transverse Mercator (NZTM). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Excavations of mature kānuka trees by Watson et al. (1995) found a 
mean maximum root length of 3.6 m and a maximum root length of 6.1 
m for the 32-year-old age group. Adopting a correction factor of 0.35 
delineated crowns per stem, the kānuka TIMSS can be interpreted 
accordingly (Table 3). Thus, the maximum effective distance of 17 m is 
due to the influence of approximately 3 stems, and the kānuka in the 
study area are largely mature trees that are several decades old so will 
likely have more developed root systems than that documented by 
Watson et al. (1995). The same study also excavated three Pinus radiata 
aged 25 years and found a mean maximum root length of 9.1 m. Once 
more, adopting a correction factor of 0.34, the conifer TIMSS with a 
maximum effective distance of 17 m can be interpreted as the effect of 
approximately 3 stems. A further important consideration is that the 
tensile strength of fine roots differs across species classes, and is a 
limiting factor for Pinus radiata, whose mean live-root tensile strengths 
are only 40% and 50% of kānuka and ‘Veronese’ poplar (Populus del-
toides x nigra) root strengths, respectively (Watson and Marden, 2004). 

However, in the absence of comparable data, the maximum distance 
of influence presents some initial interpretational difficulty; and yet, the 
data presented here are based on empirical observations of the spatial 
relationship between trees and landslide erosion. Several factors need to 
be considered when interpreting the results such as the respective con-
tributions of the hydrological and mechanical processes by which 
vegetation modifies slope stability. The TIMSS represent the mean 
spatial distribution of the combined mechanical and hydrological in-
fluence imparted on the soil during the rainfall events that triggered the 
landslides between 2005 and 2010. More detailed analysis of antecedent 
soil moisture conditions leading up to the storms of 2005, 2006, and 
2009 may shed light on the respective roles of mechanical and hydro-
logical processes of trees, particularly given that, with the exception of 
the March 2005 storm, the remainder were during the winter month of 
July where interception and evapotranspiration are less relevant due to 
leaf fall. Yet, despite being the only deciduous species class, the poplar- 
willow TIMSS outperforms the other three classes in terms of the 
magnitude of influence beyond 4 m, which supports the fact that the 
mechanical mechanism of poplar and willow species is significant due to 
the high tensile strengths of the roots. 

4.3. Implications for land management in pastoral hill country 

There has been strong emphasis on biological erosion control in New 
Zealand’s pastoral hill country – either through space-planted trees or 

blanket afforestation, because of its relative low cost and its effective-
ness (Phillips and Marden, 2005; Douglas et al., 2013). In more recent 
times, erosion mitigation has been made a component of Farm Envi-
ronment Plans (FEP), which are comprehensive plans undertaken by 
regional councils, farmers or other industry groups that integrate soil 
conservation into land management practices and farming operations 
(Phillips et al., 2000, 2008; Manderson et al., 2007; Basher, 2013; 
Basher et al., 2008, 2016a, b; Douglas et al., 2008; Mackay et al., 2012; 
Collins et al., 2014). Yet, little is known about the effectiveness of in-
dividual trees and stands and the overall effectiveness of these measures 
at landscape scales. Both the rural SVM tree species classification pro-
duced for New Zealand’s pastoral hill country and the derived TIMSS 
can be applied at farm to landscape scales to inform on which species are 
either pre-existing in the landscape or have been successfully established 
in the context of FEPs (Fig. 12). Furthermore, through integration into 
high-resolution landslide susceptibility modelling, it is now possible to 
both i) quantify the mitigation effectiveness of individual trees and 
compare species and ii) inform on where to prioritize future mitigation, 
given the spatial probability of landslide occurrence, which can be 
modified by the presence or absence of trees. Mitigation effectiveness is 
a multivariate problem, as it is dependent on site-specific conditions, 
which vary with, for example, slope gradient, soil, and rock type. 
Therefore, including the four TIMSS as covariates within a landslide 
susceptibility assessment can provide a statistical measure for the 
respective contributions of each layer to slope stability. Furthermore, 
allometric functions could also be used to scale the TIMSS, e.g. ac-
cording to tree height or area of tree canopy. 

The tree densities listed in Table 6 provide an initial indication of 
how widely soil conservation practices have been adopted in the study 
area, and the spatially explicit representation of added slope stability 
due to trees provides further detail (Fig. 12). An average of 3.2 poplar 
and willow trees/ha (total of 109,000 trees), 1.2 eucalyptus/ha (41,000 
trees) and 1.9 coniferous species/ha (66,000 trees) in pastoral hill 
country (slopes > 17.5◦) reflects the work carried out by landowners and 
soil conservators over the past several decades. However, these numbers 
are also indicative of large areas of untreated land with elevated levels of 
landslide susceptibility. To treat the remaining 212.5 km2 (56%) of 
untreated pastoral hill country (TIMSS = 0) in the study area, an addi-
tional 950,000 poplars/willows would need to be planted if using a 
regular grid of 15 × 15 m (44 sph), which falls within the recommended 
planting density of 30–60 sph (e.g. Wilkinson, 1999; Douglas et al., 
2013). A planting density of 44 sph would result in TIMSS values > 0.5, 
which would achieve significantly more reduction in landslide erosion 
than values < 0.5. However, landslide susceptibility assessments 
incorporating the species-specific TIMSS should be used to inform on 
mitigation plans and planting densities in untreated terrain, since not all 
pastoral hill country is equally susceptible to landsliding. Variation in 
morphological (e.g. slope gradient; Fig. 6), geological, and hydrological 
geo-environmental variables can influence the potential for landslide 
occurrence (van Westen et al., 2008; Suzen and Kaya, 2011; Budimir 
et al., 2015; Reichenbach et al., 2018). 

Yet, the large amount of mature kānuka in the study area, particu-
larly on hillslopes, has reduced the propensity for landsliding in many 
areas (Table 6): 50% of kānuka trees growing on pastoral land are found 
on slopes >25◦; the slope value of the 0.75 quantile is 31◦. Given that the 
mean slope of landslide scars is 32.2◦ (SD = 5.1◦), kānuka is the most 
abundant form of woody vegetation on highly susceptible slopes. 
Kānuka are better suited to these growing conditions than poplars and 
willows (Allen et al., 1992). Indeed, the 0.5 and 0.75 quantiles of slope 
values for poplars and willows on pastoral land are 18◦ and 25◦, 
respectively, and are evidence that these unrooted poles are more likely 
to be planted on lower, more hospitable slopes that favour tree estab-
lishment. Thus, more planting to reinforce susceptible slopes is required 
to reach a recommended planting density of 25–160 sph (Hawley and 
Dymond, 1988; Wilkinson, 1999; Douglas et al., 2013; Schwarz et al., 
2016). According to the TIMSS, poplars and willows have the greatest 

Table 6 
Corrected tree counts and mean densities in pastoral land and in pastoral hill 
country in study area. The combined error tree species classification and absent 
species classes is ±16.7%. Pastoral hill country is defined using a slope threshold 
of 17.5◦.  

Corrected 
tree counts 

Eucalyptus Kānuka Poplar/ 
willow 

Conifer Total 

Number of 
trees in 
pastoral 
land (sph) 

60,524 
(0.8) 

1,064,511 
(13.7) 

206,773 
(2.7) 

110,629 
(1.4) 

1,442,438 
(18.6) 

Number 
trees in 
pastoral 
hill 
country 
(sph) 

40,508 
(1.2) 

815,003 
(24.1) 

109,015 
(3.2) 

65,609 
(1.9) 

1,030,135 
(30.8) 

Trees in 
pastoral 
land (%) 

4% 74% 14% 8% 100% 

Trees in 
pastoral 
hill 
country 
(%) 

4% 79% 11% 6% 100%  
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influence on slope stability, but many other factors and potential 
co-benefits must also be considered when deciding on which species to 
plant (Benavides et al., 2009; Dominati et al., 2014; Kemp et al., 2018; 
England et al., 2020; Norton et al., 2020). 

5. Conclusions 

We developed a rural tree species classification of individual tree 
crowns using freely available high resolution multi-spectral imagery, 
with an overall accuracy of 92.6%. Native kānuka is the dominant 
woody vegetation species in pastoral hill country of the study area with 
an average of 24.1 sph, and thus provides a valuable soil conservation 
function as the most abundant species on susceptible slopes. Of exotic 
species that were planted for erosion and sediment control, poplars and 
willows make up 51% (109,000 trees) in pastoral hill country at a mean 
density of 3.2 trees/ha. 

The novel approach demonstrated in this paper advances the method 
first introduced by Hawley and Dymond (1988) by developing tree in-
fluence models on slope stability (TIMSS) for four dominant tree species 
in New Zealand’s pastoral hill country. The method uses inductive 
inference to infer tree influence by assessing the spatial relationship 
between trees and landslide erosion. This approach requires a large 
landslide inventory (we used >43,000 features) and many widely 
spaced trees (86,000) in a silvopastoral landscape. The results can both 
challenge and validate understanding of the role of trees on slope sta-
bility, which is typically quantified using physical root reinforcement 
models. The TIMSS have largely confirmed the shape and distribution of 
spatial root distribution models, with influence on slope stability 
declining rapidly with distance from trees as a sigmoid curve. Poplars 
and willows have the greatest maximum effective distance (20 m), and 
the tree influence decreases more slowly with increasing distance 
compared to the other three species classes. The spatial application of 
TIMSS has shown that 43.8% of the pastoral hill country in the study 
area (165.3 km2) has increased slope stability due to the presence of 
trees on slopes. An additional 950,000 poplars/willows at 44 sph would 
be required to mitigate landslide erosion on the remaining 212.5 km2 

(56.2%) of untreated pastoral hill country in the study area. However, 
not all pastoral hill country is equally prone to landslide erosion. 
Therefore, tree influence models should be integrated into multi-variate 
landslide susceptibility modelling in silvopastoral and agroforestry 
landscapes to support the development of targeted mitigation plans. 
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