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The acquisition of landslide inventory data remains an important challenge for landslide susceptibility modelling.
For rainfall-induced landslides, comprehensive mapping may be hindered by the size of storm-affected areas and
large number of landslides generated aswell as the time and costs involved inpreparingmulti-temporal inventories.
In New Zealand, storm events trigger hundreds to thousands of shallow landslides, causing significant damage to
land and infrastructure aswell as impacts on freshwater andmarine environments. Despite this, there are fewquan-
titative assessments of shallow landslide susceptibility to inform targeting of control measures. Here, we compare
the effect of using landslide inventories assembled from a) manual versus semi-automated mapping and b) event
versus multi-temporal records on the performance of two widely applied methods for landslide susceptibility
modelling, namely logistic regression and random forest classification. Evaluation of object-based image analysis
(OBIA) for semi-automated landslide mapping showed mixed results, where producer's and user's accuracies
ranged 62–81 and 45–55%, respectively, without manual refinement. However, the relative reduction of 6–11% in
susceptibility model predictive performance based on area under receiver operating characteristic curves (AUC)
using OBIA (AUC=0.63–0.75) versus manual (AUC= 0.67–0.81) inventories with different variable combinations
was low in comparison, and the spatial patterns inmodelled susceptibilitywere generally similar. The random forest
model produced slightly better prediction performance comparedwith logistic regression based on cross-validation
within the same study area. However, this was reversed and logistic regressionmostly outperformed random forest
when the models were fitted and tested with data from different study areas. Model predictive performance for
event versus multi-temporal records was comparable. Our results highlight both the challenges associated with
semi-automated landslide detection over large areas as well as the opportunity to use OBIA for efficient data collec-
tionwithout necessarily compromising the resulting susceptibilitymaps. This potentially overcomes significant time
and cost impediments to the preparation of landslide inventories that continue to hinder quantitative landslide sus-
ceptibility assessment.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Most landslides in New Zealand are rapid, shallow slides and flows
that occur in soil and regolith in response to storm rainfall (Crozier,
1996; Basher, 2013). Hundreds to thousands of these shallow landslides
may be triggered by infrequent large storms, so called multiple-
occurrence regional landslide events (MORLEs) (Crozier, 2017). These
events havewell-documented impacts in termsof erosiondamage topas-
toral land (Dymond et al., 2006) and associated agricultural production
losses (Krausse et al., 2001; Dominati et al., 2014). Shallow landslides
are considered the dominant erosion process in New Zealand's hill coun-
try terrain, defined as land less than 1000m in elevation with slopes typ-
ically between 20 and 30° on a variety of rock types, but most commonly
in areas dominated by weak sedimentary rocks from the Tertiary and
Quaternary (Crozier, 2010). Moreover, shallow landslide erosion,
Smith).
accelerated by land clearing, typically makes the largest erosion process
contribution to sediment budgets for hill country catchments over
multi-decadal timescales (Trustrumet al., 1999;Dymondet al., 2016). De-
spite the widespread occurrence of shallow landslides, there have been
few quantitative assessments of rainfall-induced shallow landslide sus-
ceptibility in New Zealand (e.g. Dymond et al., 2006; Schicker and
Moon, 2012). This relative paucity of landslide susceptibility information
has been noted internationally where there is a distinct geographical bias
towards Asia and Europe with the least number of studies in Oceania
(Reichenbach et al., 2018).

The number of landslides and size of areas affected by MORLEs is a
significant challenge in the acquisition of landslide data for susceptibil-
ity assessments. This often prevents comprehensive mapping of storm-
impacted areas, restricting the development of landslide inventories
due to the time and costs involved. In New Zealand, individual shallow
landslide source areas (scars) in hill country are typically small (approx-
imately 50–100 m2 in median scar size). As a result, we require very
high resolution (VHR) imagery to enable 1) accurate detection of
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individual landslide features and 2) separation of landside scar and
debris deposits for use in landslide susceptibility modelling. Semi-
automated mapping techniques offer a potential means of efficiently
acquiring such landslide data (Guzzetti et al., 2012). To date, several
studies have demonstrated the potential for object-based image analy-
sis (OBIA) to detect landslide features (Martha et al., 2010; Blaschke
et al., 2014; Kurtz et al., 2014; Hölbling et al., 2015, 2016).

Multi-temporal landslide inventories are considered the optimal
source of landslide information for statistical landslide susceptibility
modelling (Reichenbach et al., 2018). By contrast, these authors suggest
caution in using individual storm inventories due to their dependency
on the pattern and extent of rainfall triggering events. Nonetheless,
event inventories remain the second most frequently used inventory
type for susceptibility modelling (Reichenbach et al., 2018). Multi-
temporal inventories also present challenges, not least of which are
the time and cost associated with their preparation (Guzzetti et al.,
2012). In New Zealand, the detectability of small and shallow landslides
can reduce rapidly with time as landslides re-vegetate and scar margins
degrade, particularly whenmapping is reliant on historic aerial photog-
raphy that can be low resolution (De Rose, 2013) or from up to a decade
following the triggering event (Betts et al., 2017). This may result in
under-estimation of the full extent of shallow landslide occurrence. In
contrast, acquiring landslide inventories soon after storm events using
VHR imagery increases the likelihood that all landslides within a study
area will be included.

The few published studies of landslide susceptibility in New Zealand
employed heuristic and statistically based classification approaches.
Dymond et al. (2006) developed a heuristic shallow landslide suscepti-
bility model where a pixel was defined as susceptible if it a) exceeds a
pre-defined slope threshold that varied according to rock type (range
24–28°) and b) does not have closed canopy woody vegetation cover.
Schicker and Moon (2012) employed logistic regression and weights
of evidence methods using landslide data for the Waikato region on
the North Island from geological mapping and the GeoNet landslide da-
tabase (Rosser et al., 2017). However, the authors note that these data
are biased towards large landslides and the inventory comprised only
229 landslides for a 25,000 km2 region. Kritikos and Davies (2015) ex-
amined rainfall-triggered shallow landslides in the mountain terrain
of the western Southern Alps of New Zealand and developed a suscep-
tibility model with 706 landslides using fuzzy logic that adopted both
data and knowledge-driven approaches.

Here, we compare predictions of shallow landslide susceptibility
using two statistical susceptibilitymodelswith landslide inventories de-
rived from different mapping techniques and temporal intervals. OBIA
methods have only recently been used to derive landslide inventories
for susceptibility modelling (Amato et al., 2019). These authors applied
OBIA mapping in combination with manual refinement of the resulting
Table 1
Summary information for the study areas contributing shallow landslide data for susceptibility

Study
area
no.

Location Study
area
(km2)

Period Rainfall (mm)
& [duration,
hours]

ARIa (
[dura
hours

1 Wairamarama,
Waikato

178 Single event (2017) 74 [24]
146 [48]

2 [24
10–2

2 Retaruke,
Whanganui

121 Single event (2018) 160 [24]
172 [48]

80 [2
30 [4

3 Southern Hawke's
Bay

175 Single event (2011) 337 [24]
618 [48]
658 [96]

40 [2
>250
100–

4 Pohangina,
Manawatu

30.8 Multi-temporal
(1995–2011)

Multi-event
147–195 [24]

50–6
[24]

5 SE Pahiatua,
Manawatu

9.8 Multi-temporal
(1997–2011)

Multi-event
102–106 [24]

10–2

6 Mangamaire,
Manawatu

9.4 Multi-temporal
(1997–2011)

Multi-event
102–106 [24]

10–2

a Average recurrence intervals (ARI) obtained from NIWA's High Intensity Rainfall Design S
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inventory for use in modelling. In contrast, our study is the first to com-
pare susceptibility model performance using landslide inventories de-
rived from manual versus OBIA mapping techniques. We do not
manually refine our OBIA results and instead usemanual scar areamap-
ping to independently evaluate OBIA classification performance. This
ensures that OBIA results directly reflect OBIA classification perfor-
mance rather than a combination of OBIA and manual procedures that
depends on the extent ofmanual editing. This approach allows us to ex-
amine the balance between rapid, high-volume data acquisition made
possible by semi-automated methods versus potential reductions in
mapping accuracy and the effect on landslide susceptibility assessment.

Numerous landslide susceptibility studies report comparisons of dif-
ferent statistical methods (e.g. Rossi et al., 2010; Pradhan, 2013; Goetz
et al., 2015; Chen et al., 2017; Pourghasemi and Rahmati, 2018). In
their review, Reichenbach et al. (2018) noted this tendency in the
literature for excessive experimentation with statistical methods that
they considered largely unjustified. For this reason, we do not seek to
compare a range of statistical models here. Instead, we select two
models, namely logistic regression and random forest, on the basis
that logistic regression is themostwidely appliedmodel in the landslide
susceptibility literature (Reichenbach et al., 2018) and thus maximises
comparability, while machine learning methods such as random forest
have received increasing attention and been found to perform well
compared with other methods (Goetz et al., 2015; Youssef et al., 2016;
Pourghasemi and Rahmati, 2018).

The present study has the following objectives: 1) evaluate the accu-
racy of OBIA for semi-automated landslide mapping following storm
events; 2) compare susceptibility model performance based on land-
slide inventories produced bymanual versusOBIAmapping techniques;
and 3) assess susceptibility models based on event versus multi-
temporal landslide inventories to better understand how inventory
type affects susceptibility model performance. We draw on shallow
landslide inventories for six study areas located in hill country environ-
ments on the North Island of New Zealand. These comprise three storm
event and three multi-temporal inventories derived from VHR satellite
imagery and aerial photography. Compared with the few previous sta-
tistical studies of landslide susceptibility in New Zealand, we draw on
a much larger dataset of over 53,000 shallow landslides.

2. Methods

2.1. Study areas

The shallow landslidemapping and susceptibilitymodelling focused
on six study areas ranging in size from 9.4 to 178 km2 (Table 1). These
areas are located across the central North Island of New Zealand
which contains extensive hill country terrain (Fig. 1). All study areas
modelling.

y) &
tion,
]

Dominant underlying rock type Imagery sources pre- and
post-event (resolution)

]
0 [48]

Sandstone, argillite, mudstone Pre: Pleiades-1A
Post: GeoEye-1 (0.5 m)

4]
8]

Mudstone, sandstone, volcanic
ash beds

Pre: Pleiades-1A
Post: Worldview-2 (0.5 m)

4]
[48]
250 [96]

Crushed argillite, limestone,
mudstone, sandstone

Pre: Orthorectified aerial photography
Post: Worldview-2 (0.4 m)

0 to >250 Unconsolidated sandstone Orthorectified aerial photography
(0.4–0.75 m)

0 [24] Sandstone and mudstone Orthorectified aerial photography
(0.4–0.75 m)

0 [24] Mudstone Orthorectified aerial photography
(0.4–0.75 m)

ystem (HIRDS) v4.



Fig. 1. Location of six study areas for shallow landslide mapping on the North Island of New Zealand, and the extent of hill country (after Dymond et al., 2010).
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are underlain by a range of Tertiary and Quaternary sedimentary rocks,
which in the Whanganui study area are overlain by volcanic ash pre-
dating the Taupo eruption c. 1820 years ago (Table 1). The landslide re-
sponse is largely attributed to a single storm event for three areas,
namely Waikato (2017 storm), Whanganui (2018), and Hawke's Bay
(2011), which range in size from 121 to 178 km2 (Table 1). For the
other three areas multi-temporal landslide inventories were prepared.

For the three single events, study area selection was initially guided
by the landslide impact (i.e. focusing on the areawith the greatest num-
ber of landslide scars) based on local reports and lower resolution (5m)
imagery. The delineation of specific areas formappingwas then defined
by the availability ofmostly cloud-free, intersectingpre- andpost-storm
Fig. 2. Mapping extents (boundary line) and shallow landslide scar locations (points or pol
d) Pohangina, e) SE Pahiatua and f) Mangamaire multi-temporal study areas. The Hawke's B
cover were excluded from mapping.

4

VHR (≤0.5m) satellite or aerial imagery. Due to the relatively infrequent
capture of VHR imagery over New Zealand, the choice of suitable
intersecting images for mapping was constrained. Hence, the imagery
selected (Table 1) represents the best available within the shortest in-
terval before the date of the landslide triggering storm, while post-
event imagery was available 6–7 months after triggering events.
While this may result in some re-working of landslide scars with subse-
quent rainfall (see Section 2.2), this post-event interval allowed partial
revegetation of debris deposits compared with unvegetated scars that
aided separation of landslide scars and debris deposits based on differ-
ences in reflectance during manual and semi-automated mapping. For
Hawke's Bay, partial cloud cover in the available post-event satellite
ygons) for a) Waikato, b) Whanganui, and c) Hawke's Bay event-scale study areas and
ay study area was divided into a grid and those grid cells with partial or complete cloud
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imagery necessitated exclusion of cloud-affected areas from the wider
area subject to manual and OBIA mapping (Fig. 2c).

Study areas 4–6were originally chosen to represent hill country ter-
rain dominated by different geological parent material and erosion pro-
cess susceptibility (Dymond et al., 2013). Landslide inventories from
these study areas comprise multi-temporal records based on manual
mapping from aerial photographs. Data from two of these study areas
(Pohangina and SE Pahiatua) were previously reported by Betts et al.
(2017) who investigated the effect of differences in underlying geology
on the landslide-slope relationship. Subsequently, the size of these
study areas was increased with further mapping and a third study
area added (Mangamaire) to produce an expanded shallow landslide
database. Landslide mapping for the Pohangina, SE Pahiatua, and
Mangamaire study areas spans successive aerial photographs captured
in the 1990s, 2004, and 2011 (Betts et al., 2017) and provides informa-
tion on spatial patterns in shallow landslide occurrence for which con-
current land cover data is also available. Landslide data reported by
Betts et al. (2017) from earlier aerial photography captured in the
1940s and 1970s was not included due to uncertainty related to the ex-
tent of land cover changes prior to commencement of national land
cover mapping in 1996. We also exclude areas of exotic forest as these
account for land cover change between 1996 and 2012 in the multi-
temporal study areas. This ensured that mapped landslides (and non-
landslide locations used in modelling) could be related to land cover
present over the duration of the multi-temporal study period.

2.2. Storm rainfall and imagery

Storm rainfall data is available from recording sites within or near
the three study areas covering event-scale landslide responses
(Table 1). While the individual storms that triggered the landslide re-
sponses have been confirmed, there is potential for some re-working
or the limited formation of new scars with post-event rainfall during
the intervals between the storm events and post-event imagery. For
comparison, we report rainfall totals for the main landslide-triggering
storm event alongside other high magnitude rainfall amounts for each
measurement interval.

For the Waikato study area, pre-event Pleiades-1A imagery was
available for 4 January 2017. The landslide triggering storm event
occurred over 4–5 April 2017 and totalled 146 mm based on Waikato
Regional Council's Wairamarama gauge that is located within the
study area. The next highest 2-day rainfall total of 99 mm occurred
just over one month later and potentially contributed to some re-
working of landslide scars and debris deposits. However, this subse-
quent event falls below the estimated landslide triggering threshold of
125–200 mm in 48 h reported by Basher et al. (2020). Post-event
GeoEye-1 imagery was captured on 18 October 2017.

Pre-event Pleiades-1A imagery was available for 4 March 2018 im-
mediately before the storm event that triggered landslides across the
Whanganui study area. The total storm rainfall based on the nearest
rain gauge located 9 km from the centre of the study area was 172
mm over 7/8 March 2018 (Lower Retaruke CWS, NIWA network no.
C95012), of which 160 mm occurred in 1 day. Following the storm,
the next highest daily rainfall total of 49 mm occurred 1 month later.
Post-event, Worldview-2 imagery was available over the area for 10
September 2018.

The storm event in southern Hawke's Bay had the largest impact on
an area near the coast betweenCapeKidnappers and Porangahauwhere
rainfall ranged from ~200 to 650 mm across the 175-km2 study area
during 25–28 April 2011 (Jones et al., 2011). The Hawke's Bay Regional
Council's Waipoapoa gauge, located near the centre of the study area,
recorded total storm rainfall over the 4-day period of 658 mm, with
highest 1- and 2-day totals of 337 and 618 mm, respectively. Regional
aerial photography from the 2010/11 summer period was available be-
fore the event, while post-eventWorldview-2 imagerywas captured on
1 December 2011. An earthquake (M 4.5 Richter magnitude) occurred
5

during the storm but was below the minimum magnitude typically re-
quired to produce a landslide response (Jones et al., 2011). During the
interval after the April storm, another event occurred with a 2-day
total of 193 mm (22–23 July). This may have contributed some addi-
tional landslide scars and to re-working of existing scars.

Storm event rainfall was compiled by Betts et al. (2017) for the
Pohangina and SE Pahiatua/Mangamaire study areas. The range in re-
ported maximum daily totals was 147–195 and 102–106 mm for the
Pohangina and SE Pahiatua/Mangamaire study areas, respectively, dur-
ing our multi-temporal study period. The largest number of landslides
in the multi-temporal inventory was associated with a single storm
event in 2004 (Betts et al., 2017).

2.3. Manual landslide mapping

Manual mapping comprised both point and area-based representa-
tion of individual landslide source areas (scars). The size of study
areas 1–3 (Table 1) and the large number of scars present meant it
was not practical to manually delineate all scar areas. Therefore, we ap-
plied point-based manual mapping for these areas (cf. Petschko et al.,
2015) that involved placing a single point at the centre of individual
landslide source areas. This mapping excluded landslides detected in
pre-event imagery. In contrast, manual delineation of all landslide scar
areas was previously completed for the smaller multi-temporal study
areas 4–6 (Table 1) as reported by Betts et al. (2017).

We selected a subset of landslide scars for manual area mapping in
study areas 1–3 using a random grid sampling approach. These data
were used to evaluate the classification performance of semi-
automated mapping. The procedure involved dividing each study area
into a 0.5 × 0.5 km grid, randomly selecting 10% of the grid squares,
and mapping all scars present within the selected squares (Fig. 3). All
manual landslide delineation was performed by the same person and
followed the procedure outlined by Betts et al. (2017) in which land-
slide margins were delineated using ArcGIS 10.5 at on-screen scales
ranging 1:600 to 1:1250. Landslides were divided into scar and debris
deposit areas based on differences in reflectance (Betts et al., 2017),
but only scar data are used for landside susceptibility modelling.

2.4. OBIA classification

A semi-automatedmapping procedurewas applied as an alternative
approach to identify and classify landslide scar features for study areas
1–3. The primary advantage of this approach over manual delineation
of scars is that it enables rapid mapping using a set of defined rules
that ensures consistency across complete study areas. The OBIAmethod
combines image processing and GIS functions to delineate and classify
homogenous objects (Blaschke, 2010; Blaschke et al., 2014). We used
Trimble's eCognition software and employed a knowledge-based
ruleset (Hölbling et al., 2016).

Fig. 4 illustrates the OBIA procedure used for detecting and classify-
ing shallow landslides. Three distinct classifications were performed to
delineate landslides. First, pre-existing erosion features were removed
bymappingbare ground in thepre-eventVHRmultispectral (MS) imag-
ery, except for the Hawke's Bay study area where available pre-event
aerial photography was limited to RGB. Next, farm tracks and roads
were classified in the post-event imagery, as these are often associated
with areas of bare ground and are a potential source of error. Finally,
landslide scars were identified in the post-event imagery, with false
positives removed by overlaying pre-existing bare ground, roads, and
tracks.

For each of the three rule-based classifications, image objects were
created using the multiresolution segmentation algorithm based on
spectral information of the imagery. Scale, shape, and compactness pa-
rameters were optimised based on the classification objective and
image resolution. For example, roads and farm tracks are typically
long, linear features in the landscape, so the compactness parameter



Fig. 4. Workflow for OBIA mapping of shallow landslide scars across study areas 1–3.

Fig. 3. Example of manually delineated shallow landslide scars from the Hawke's Bay study area. Post-storm event landslide scars were identified based on comparison with pre-event
imagery.
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was reduced to allow objects to be elongated. Following the creation of
image objects, geometric and topographic properties (slope < 20°)
were used in conjunction with the spectral properties of objects (high
brightness and low normalised difference vegetation index (NDVI)
values) to classify roads and tracks. For Hawke's Bay, NDVI could not
be calculated for the pre-event imagery, thus only brightness was used.

To classify both pre-existing bare ground and landslides associated
with the storm events, two object levels were created using a multi-
scaled segmentation approach, which organizes the objects into a hier-
archy (Blaschke et al., 2014). The level 0 objects (L0)were created at the
pixel level and aim to represent small landslide scars or components of
larger landslides. The level 1 objects (L1)were generated through a sec-
ondmulti-resolution segmentation based on the L0 objects. This gener-
ally resulted in the delineation of individual paddocks/land parcels, the
borders of which were shared with the underlying L0 objects (Blaschke
et al., 2014). The advantage of this approach is that the description of
low-level objects is enhanced through consideration of their local envi-
ronmental setting. Thiswas achieved by calculating themeandifference
in brightness and NDVI between L0 and L1. This method increases local
contrast and allows detection of landslide scars thatwould otherwise be
unfeasible using single thresholds for complete study areas.

The final step sought to differentiate landslide scars from debris de-
posits. Due to the exposed subsoil or rock surface, scars are generally
brighter objects with less variance in the spectral values than debris de-
posits. The deposits typically have lower brightness values, higher NDVI
values, and greater variance that reflects intermixed grass cover and
bare soil. Additionally, they are situated below scars. The rule-set thus
follows a 2-step approach inwhich scars are initially classified, followed
by debris deposits using the following criteria: a debris deposit must be
an object that borders a scar and has 1) lower mean elevation than the
adjacent scar object and 2) a low mean and high standard deviation
NDVI. This procedure was implemented as a loop to allow deposits to
grow down a slope across multiple L0 objects.

The classification performance of OBIA-based mapping was evalu-
ated by comparison with the random grid-based sample of manually
mapped landslide scars from study areas 1–3. Accuracywas assessed ac-
cording to the number of manually mapped landslide scars that inter-
sect with OBIA-mapped scars. Producer's and user's accuracies were
computed where the producer's accuracy refers to the number of man-
ual scars intersecting OBIA scars relative to the total number of manu-
ally mapped scars. User's accuracy equates to the number of manual
scars intersecting OBIA scars relative to the total number of OBIA-
mapped scars and provides ameasure of reliability. Inmaking this com-
parison,we also recognise the challenge associatedwith using reference
data from manual mapping that depends on expert judgement
(Hölbling et al., 2015).

2.5. Explanatory variables

Explanatory variables for landslide susceptibility modelling were
obtained from national datasets for elevation (15-m digital elevation
model), rock type mapped at 1:63,360 scale with some areas subse-
quently remapped at 1:50,000 scale (NZ Land Resources Inventory,
Newsome et al., 2008), and land cover from thematic classification of
satellite imagery (NZ Land Cover Database, LCDB, from 2012 and
2018) with a minimum mapping unit of 1 ha. Slope angle and flow
Table 2
Topography, land cover (LCDB classes) and rock type (NZ Land Resources Inventory) inputs us

Data Model inputs

Topography (T) Slope; Aspect; Flow accumulatio
Land cover (LC) Indigenous Forest; Exotic Forest;

Mānuka and/or Kānuka; Broadle
Rock type (R) Argillite – crushed; Floodplain al

or fine siltstone – jointed; Mudst
siltstone – massive; Unconsolida

7

accumulation (continuous variables), aspect (categorical variable with
8 classes), profile (categorical: convex, concave, planar) and planform
curvature (categorical: convergent, divergent, planar)were also derived
from the DEM (Table 2). These input variables were selected because
a) there is a physical basis for how each variablemay influence landslide
susceptibility (outlined below), b) model inputs can be derived for all
study areas, and c) use of national datasets does not impose a potential
spatial constraint on predictions of landslide susceptibility required for
land management. Instead, limits on the applicability of susceptibility
predictions for different terrain primarily relate to the landslide inven-
tories available for modelling.

Slope is the most widely used explanatory variable in landslide sus-
ceptibility modelling (Reichenbach et al., 2018). Slope angle exerts a
fundamental physical control through its effect on the shear stress act-
ing on a slope and the resulting shear strength required tomaintain sta-
bility (Crozier et al., 1980; Crozier, 2010). Several studies in New
Zealand have identified variation in slope as the key factor driving spa-
tial patterns in shallow landslide occurrence (Dymond et al., 2006; De
Rose, 2013; Betts et al., 2017). Topographic formmay influence suscep-
tibility via its effect on soil water movement (Crozier et al., 1980). The
inclusion of flow accumulation (upslope contributing area of each
pixel) as a model input may reflect patterns in water flow and potential
soil saturation (Catani et al., 2013). Calculation of planform curvature al-
lows delineation of convergent zones that concentrate flow and in-
crease the likelihood of soil saturation that could contribute to failure
(Catani et al., 2013; Crozier, 2017). Profile curvature represents the
rate of change in slope angle in the direction of maximum slope and
helps discriminate between erosional versus depositional areas.

Aspect may influence susceptibility via a) differences in solar radia-
tion affecting soil moisture, vegetation growth and soil development
(Burnett et al., 2008; van Westen et al., 2008; Inbar et al., 2018),
b) bedding angle (Ruff and Czurba, 2008) or c) rainfall direction associ-
atedwith landslide-triggering stormevents (Liu and Shih, 2013). Aspect
has been shown to be a factor in the spatial patterns of shallow land-
slides in New Zealand, where northern aspects were reported as more
vulnerable to landslide occurrence (Crozier et al., 1980; Gao and Maro,
2010). This was attributed by Gao and Maro (2010) to greater solar ra-
diation increasing wetting-drying cycles on these slope aspects causing
soil cracking that allows more rapid saturation of subsoils during storm
events.

Rock type may also influence landslide susceptibility. This occurs in-
directly through its effect on soil properties (e.g. texture, permeability)
and slope angle rather than directly via bedrock strength given that
shallow landslides (typically 0.5–1 m deep) in New Zealand generally
occur in regolith (Crozier et al., 1980; Reid and Page, 2002; Betts et al.,
2017). Notably, Betts et al. (2017) found landslide density to be inde-
pendent of rock type based on analysis of historic aerial photographs.
However, this analysis was limited toweakly andmoderately indurated
sandstone and mudstone. Land cover affects susceptibility via tree root
reinforcement and alterations to soil moisture resulting from differ-
ences in canopy interception, evaporation, transpiration and the forma-
tion of preferential flow pathways via root systems (Phillips and
Marden, 2005; Ghestem et al., 2011; Stokes et al., 2014). Numerous
studies report higher densities of storm-generated landslides for pas-
ture compared to forested terrain in New Zealand (e.g. Reid and Page,
2002; Dymond et al., 2006; Basher, 2013).
ed in shallow landslide susceptibility modelling across the study areas.

n; Planform curvature; Profile curvature.
High Producing Exotic Grassland; Low Producing Grassland; Deciduous Hardwoods;
af Indigenous Hardwoods.
luvium; Argillite; Limestone; Loess; Mudstone or fine siltstone – banded; Mudstone
one or fine siltstone – massive; Ashes older than Taupo pumice; Sandstone or coarse
ted to moderately consolidated clays, silts, sands, tephra & breccias.
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We assembled data for the explanatory variables corresponding to
landslide presence and absence locations. Spatial data were extracted
based on intersection with either a single manually placed point or in-
ternal centroid from polygon mapping for each landslide scar. The use
of single points to represent scars instead of polygons that may cover
multiple raster cells reduces spatial autocorrelation between observa-
tions (Petschko et al., 2014; Goetz et al., 2015). Here, a DEM grid cell
(225 m2) would encompass a typical landslide scar. Moreover, the spe-
cific choice of point locationwithin a landslide scar polygonwas consid-
ered by Petschko et al. (2013) and found to have little effect on model
predictive performance. Landslide scars mapped with points in study
areas 1–3were buffered to approximate scar area and excluded from se-
lection as non-landslide locations. The buffer distance was set to the ra-
dius of a circle defined by the mean landslide scar area from manual
mapping for each study area. Non-landslide points were assigned ran-
domly to any location where a landslide was not recorded with a mini-
mum distance between non-landslide points of two times the scar
radius.

The random placement of non-landslide points was repeated five
times for each study area to provide a measure of variability associated
with the selection of point locations. The number of non-landslide
points was set to equal the number of mapped landslide scars for each
study area (Goetz et al., 2015; Chen et al., 2017; Lombardo and Mai,
2018). The sensitivity to presence/absence ratio was examined by
Heckmann et al. (2014) who found that the choice of ratio did not sig-
nificantly affect predictive performance using logistic regression.

2.6. Statistical modelling

2.6.1. Logistic regression
Logistic regression is a type of generalised linear model (GLM) that

uses a logistic function with a binary dependent variable (landslide
presence/absence). It relates the probability (P) of landslide scar pres-
ence (Y = 1) to the spatial explanatory variables (x1, x2,…xn) where
β0, β1, β2…βn are fitted constants (Eq. (1)):

P Y ¼ 1ð Þ ¼ 1
1þ e− β0þβ1x1þβ2x2…βnxnð Þ ð1Þ

Logistic regression is sensitive to collinearity between input vari-
ables.We assessed potential collinearity using the variance inflation fac-
tor (VIF) with the ‘usdm’ R package (Naimi, 2015) and a VIF value >10
as a threshold for variable exclusion (Conoscenti et al., 2016). The
resulting ranges in VIF values for the study areas were 1.01–1.06 and
1.12–1.49 for flow accumulation and slope, respectively.

We select variables for inclusion in the logistic regression analysis
based on prior information on how each variable may influence
landslide susceptibility and data availability. We do not use automated
stepwise variable selection given potential biases in parameter estimates
and other issues thatmay result fromusing this procedure (Harrell, 2001;
Lombardo and Mai, 2018). To test the effect of variable inclusion on
predictive performance, we compare variable combinations comprising
1) topography-based inputs only (i.e. slope, aspect, flow accumulation,
curvature), 2) topography and land cover, and 3) topography, land
cover and rock type using the logistic regression and random forest
models.

2.6.2. Random forest
Random forest models (Breiman, 2001) comprise multiple individ-

ual classification trees (to create the ‘forest’) that are combined to
make a prediction. Each tree is formed by taking a random sample
with replacement for training with the remaining ‘Out-of-bag’ (OOB)
data used to evaluate the classification error as trees are added. The al-
gorithmalso draws a random subset of predictor variables for each node
in a tree where the variable achieving the best data split is selected for
that node. The final prediction of landslide presence/absence is
8

determined by the majority classification result achieved across all
trees in the forest. Several studies have applied random forest models
for landslide susceptibility analysis and found they performed well
when compared with other models (Goetz et al., 2015; Youssef et al.,
2016; Pourghasemi and Rahmati, 2018).

Weuse R package ‘randomForest’ (LiawandWiener, 2002) to imple-
ment Breiman and Cutler's random forest algorithm based on Breiman
(2001). The number of trees (ntree) and the number of variables ran-
domly sampled for each data-splitting node (mtry) are selected by the
user. Catani et al. (2013) tested how increasing tree number affected
prediction accuracy based on theOOB classification error. These authors
found that the OOB error began to stabilise from 100 trees and selected
200 trees formodelling. Here, we conservatively set the number of trees
to 300 to balance run time with accuracy. For mtry, we use the default
setting of the square root of n variables (Liaw and Wiener, 2002).

2.6.3. Model evaluation
We compare predictive performance of the logistic regression and

random forest models based on landslide inventories derived from
a) manual versus semi-automated mapping and b) event versus
multi-temporal datasets. Landslide susceptibility models are usually
trained and tested on separate datasets. This typically involves splitting
data from a given study area, whether by temporal partitioning or via
geographic sampling, either randomly or using spatially selected sub-
samples (Reichenbach et al., 2018). However, the purpose of modelling
is the production of landslide susceptibility maps to inform land and
hazard management typically over wider areas or regions. Thus, it is
also important to understand howmodels performwhen applied to dif-
ferent study areas within an equivalent spatial domain, which, in the
present study, relates to New Zealand's hill country terrain. Therefore,
in addition to evaluatingmodels within each study area, we test perfor-
mance of models fitted usingmulti-temporal data from study areas 4–6
with event data (study areas 1–3), and vice versa where models fitted
with event data are tested with the multi-temporal data.

Model predictive performance was assessed using k-fold cross-
validation. Landslide presence and absence datasets were randomly
shuffled and then split into k = 5 folds, where k – 1 folds were used
for model fitting and each remaining fold was used once for testing.
The same k-fold splits were applied to both statistical models to ensure
consistency when comparing predictive performance using the same
data within each fold. This procedure was repeated for the five sets of
randomised non-landslide locations to produce a combined total of 25
data splits for each study area and combination of input variables.
When making statistical comparisons between model results, we ap-
plied the Bonferroni correction to adjust for multiple testing. This di-
vides the significance level (α = 0.05) by the number of tests
performed.

We test model sensitivity to sample size by randomly sampling our
presence/absence data in equal proportions (cf. Petschko et al., 2014)
using sample sizes of n = 400, 800, 1600, 3200, 6400, 12,800 as well
as all data. This analysis focuses on comparing the two statisticalmodels
with the combined event (study areas 1–3) versus multi-temporal
(study areas 4–6) inventories. While smaller samples may produce
more varied and less accurate predictions, they are also less likely to ex-
perience issues with either spatial autocorrelation that violates the lo-
gistic regression assumption of independent observations or model
overfitting (Heckmann et al., 2014). However, the issue of spatial auto-
correlation is less problematic when the focus is on predictive perfor-
mance rather than statistical inference using model coefficients
(Brenning, 2005).

Model classification performance (i.e. landslide versus non-
landslide) was evaluated using receiver operating characteristic (ROC)
curves and calculation of the area under curve (AUC) based on the 25 it-
erations using the ‘ROCR’ package (Sing et al., 2005). ROC curves and
AUC values are widely used in the landside susceptibility literature to
assess model performance (Reichenbach et al., 2018). ROC curves plot



Fig. 5. Probability density plots of shallow landslide scar areas for event (study areas 1–3)
versus multi-temporal (study areas 4–6) inventories based on manual delineation of
landslide scar areas. For display, the range in scar area on the x axis is limited to 1000
m2, which excludes 1.2 and 0.5% of the event and multi-temporal datasets, respectively.
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the true positive rate (TPR ¼ TP
TPþFN) versus the false positive rate (FPR ¼

FP
TNþFP) to give an indication of sensitivity (probability of detection) ver-
sus 1 – specificity (specificity refers to the true negative rate)
(Conoscenti et al., 2016). An AUC threshold of 0.7 was considered ac-
ceptable following Hosmer et al. (2013). An AUC value of 0.5 corre-
sponds to performance no better than a random guess, while an AUC
of 1 would indicate perfect classification. Spatial prediction of landslide
probability values employed the ‘raster’ package (Hijmans, 2019). All
statistical analyses were completed using R v3.5.1 (R Core Team, 2018).

3. Results

3.1. Shallow landslide characteristics

Shallow landslide data from manual mapping across the six study
areas are summarised in Table 3. Landslide scar densities range
43–155 scars km−2 for individual storm events compared with
58–214 scars km−2 based on the multi-temporal records (Table 3).
The landslide scarmapping shows clear spatial patterns in scar locations
(Fig. 2). Over short distances (<1 km) there are distinct changes in the
spatial density of landslide scars that correspond to land cover, such as
pasture versus indigenous forest cover (e.g. Fig. 2b).

The observed event-scale scar densities increase with themaximum
estimated average recurrence interval of each storm event. Maximum
ARIs of 10–20 (Waikato), 80 (Whanganui) and >250 (Hawke's Bay)
years correspond to increasing scar densities of 43, 105 and 155 scars
km−2, respectively. Similarly, a large range in scar densities was ob-
served for study areas 4–6 based on multi-temporal data.

Mean and median landslide scar areas range from 95 to 181 m2 and
50–106 m2, respectively, across the six study areas. This is based on a
random grid-based sub-sample (10% by area) for study areas 1–3 and
complete coverage for the smaller study areas 4–6. The probability den-
sity for event versus multi-temporal scar areas is plotted in Fig. 5 and
shows similar distributions.

3.2. OBIA landslide classification performance

OBIA mapping produced mixed results when compared with man-
ual delineation of landslide scars across 10% of study areas 1–3. OBIA re-
sults consistently exceeded the number of landslide scars mapped
manually. OBIA performed better for the Whanganui study area
(Table 4) where Producer's and User's accuracy were 64 and 55%, re-
spectively. Performance was consistently poorest for Waikato, while
there was a large range between the producer's (81%) and user's
(46%) accuracies for Hawke's Bay (Table 4). To avoid ambiguity in the
comparison of OBIA versus manual mapping results, we did not apply
any manual refinement to OBIA outputs. Thus, accuracies demonstrate
a base level of performance related to the semi-automated classification
procedure only. Further improvements in accuracy would depend on
the extent of manual editing applied.

The number of OBIA mapped scars in Hawke's Bay, Waikato and
Whanganui exceed manually mapped scars by 77, 38 and 17%, respec-
tively. The higher rate of false positives in Hawke's Bay and Waikato
Table 3
Summary of shallow landslide data frommanual mapping of the six study areas. The mapped
number of mapped scar polygons is based on a random grid-based sub-sample (10% by area)

Study area
no.

Location Measurement period Total no. of scars
[point or polygon]

1 Waikato Single event (2017) 7704
2 Whanganui Single event (2018) 11,585
3 Hawke's Bay Single event (2011) 27,170
4 Pohangina Multi-temporal (1995–2011) 4782
5 SE Pahiatua Multi-temporal (1997–2011) 2096
6 Mangamaire Multi-temporal (1997–2011) 548
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reflects more extensive areas of non-landslide bare ground and rock
outcrops that were challenging to discriminate from landslide scars
using OBIA. While moderate producer's accuracies were obtained
(62–81%), the lower user's accuracies reflect issues in the reliability of
OBIAmapping results due to the number of false positives. For Hawke's
Bay, the higher false positives may also reflect underestimation of
existing bare ground due to the absence of a near-infrared band in
pre-event imagery to compute NDVI as part of the classification proce-
dure. Comparison of pre- and post-event imagery enabled the identifi-
cation and removal of many pre-existing non-landslide features, but
minor differences in georectification between images was a partial im-
pediment to this process. Furthermore, the image pairs were spaced
several months apart, which introduces challenges resulting from sea-
sonal (e.g. deciduous trees) or land cover changes (e.g. forest harvest-
ing). Temporal proximity of pre- and post-images increases the
likelihood that observed spectral changes are associated with the
storm rather than other environmental changes but reduces the ability
to discriminate scar and debris deposit features.

3.3. Landslide susceptibility

3.3.1. Prediction within study areas
Mean AUC values from cross-validation within study areas range

0.67–0.80 and 0.67–0.81 for logistic regression and random forest
number of landslides for study areas 1–3 excludes scars present in pre-event imagery. The
for study areas 1–3 versus complete coverage for the smaller study areas 4–6.

Scar density
(scars km−2)

No. mapped scar
polygons

Mean scar area
(m2)

Median scar area
(m2)

43 1021 95 50
105 920 180 106
155 1478 181 84
155 4782 154 98
214 2096 118 62
58 548 120 71



Table 4
Producer's and user's accuracy based on comparison of the number of intersecting landslide scars between manual and OBIA mapping for the three event-scale study areas.

Study area Count manual Count OBIA Count manual intersecting OBIA Producer's accuracy (%) User's accuracy (%)

1. Waikato 1021 1404 629 62 45
2. Whanganui 920 1074 593 64 55
3. Hawke's Bay 1478 2623 1194 81 46
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models, respectively, using manual inventories with different variable
inputs (Table 5). The addition of explanatory variables improved
model predictive performance based on cross-validation results. The
largest increase in AUC occurredwith the addition of land cover in com-
bination with topographic variables (i.e. slope, aspect, flow accumula-
tion, curvature). This difference in AUC was significant for both
models (Wilcoxon signed-rank test for dependent samples, p < 0.005,
with the Bonferroni correction), while the further addition of rock
type produced a small but significant increase (p < 0.005) in all but
one case (Whanganui study area). Variation in AUC values related to re-
peated random spatial selection of non-landslide locations was minor
and equated to a maximum range of 0.01 across all variable combina-
tions and inventories.

The random forestmodel produced slightly better prediction perfor-
mance compared with logistic regression when tested within the same
study area. This small difference between models was significant for all
study area inventories except Waikato (Wilcoxon signed-rank test, p <
0.01). While differences were minor, based on cross-validation results,
the landslide susceptibility maps produced by each model differ more
markedly in terms of the probability values and in the extent of higher
susceptibility areas (Fig. 6). This difference is evident in histograms
comparing pixel values from logistic regression versus random forest
predictions (Fig. 7). Random forest produces greater discrimination be-
tween stable versus unstable land, whereas logistic regression probabil-
ity values are closer to 0.5, which has been shown to correspond to
higher uncertainties compared with values nearer 0 or 1 (Guzzetti
et al., 2006; Rossi et al., 2010).

Model predictive performancewas similarwhen comparing individ-
ual event, combined event (Fig. 8a), and multi-temporal (Fig. 8b)
datasets using cross-validation with manual data for each study area
(Table 5). The range in mean AUC values (0.71–0.77) for the multi-
temporal landslide inventory (combined data from study areas 4–6)
falls within the range of AUCs obtained from the individual and com-
bined storm event inventories (0.67–0.81). The lack of clear improve-
ment in predictive performance for the multi-temporal compared to
event-based inventories may reflect the density of shallow landslides
within the event study areas. Increasing event landslide density
(range 43–155 scars km−2) generally corresponds with increasing
mean event AUC values in the sequence of Waikato, Whanganui and
Hawke's Bay study areas.

Comparison of model performance using all input variables with in-
creasing sample size shows an increase in AUC and decrease in inter-
quartile range (IQR) (Fig. 9), as would be expected. The increase in
mean (andmedian) AUC with sample size was similar between logistic
regression and random forest models, which ranged between 0.72 and
0.77 (0.72–0.77) and 0.70–0.79 (0.71–0.79), respectively. The decrease
Table 5
Comparison of mean AUC values from cross-validation within study areas for logistic regressio
OBIA inventories for individual events as well as manual data for the combined events (study

Model Input variables Waikato Whanganui

Manual OBIA Manual O

LR T 0.67 0.63 0.68 0
T + LC 0.72 0.65 0.79 0
T + LC + R 0.73 0.66 0.80 0

RF T 0.67 0.63 0.69 0
T + LC 0.72 0.66 0.79 0
T + LC + R 0.73 0.67 0.80 0
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in IQR spanned 0.09–0.003 and 0.12–0.01 across both models for the
event versus multi-temporal inventories, respectively. Above a sample
size of n = 6400, predictive performance was consistent with mean
andmedianAUC>0.76 and IQR<0.02 for bothmodels and inventories.

Model predictions based on the combined event versus multi-
temporal inventories were generally consistent irrespective of sample
size (Fig. 9). This comparison based on equal sample sizes indicates
that differences in performance when using all data (Table 5) are not
simply a reflection of a difference in the amount of data available for
model fitting. Notably, the largest sample of n = 12,800 corresponds
to 14 and 87% of the combined event and multi-temporal inventories,
respectively. This shows that despite having access to a larger propor-
tion of the available inventory for fitting, the multi-temporal-based
models did not outperform the combined event models in cross-
validation.

3.3.2. Manual vs. OBIA landslide inventories
Mean AUC values associated with susceptibility models based on

manual point mapping consistently exceed OBIA-based results
(Table 5). Thedifferences in AUCbetweenmanual versusOBIA averaged
0.06, 0.05, and 0.08 for Waikato, Whanganui, and Hawke's Bay, respec-
tively. However, comparison of susceptibility maps based on manual
versus OBIA landslide inventories show that patterns in susceptibility
are generally similar. As an example, Fig. 10 contains susceptibility
maps based on logistic regression with topography, land cover and
rock type inputs. Areas exhibiting higher probability values are reason-
ably consistent between the manual and OBIA based maps.

The largest difference in susceptibility occurs in the Waikato study
areawhere a high number of false positives in the north-west corner re-
sulted in higher predicted susceptibility based on the OBIA compared
with the manual inventory (Fig. 10). Histograms of modelled pixel
probabilities for each study area show susceptibility results based on
OBIA compared to manual inventories have fewer values close to 0 or
1 and more values close to 0.5 (Fig. 11). This mostly resulted in under-
prediction of stable areas compared to manual inventories, particularly
for Waikato and Hawke's Bay, where there were a higher number of
OBIA false positives.

3.3.3. Prediction between study areas
The range in mean AUC values for models fitted with event data and

tested with the multi-temporal data was 0.66–0.73 across both model
types (Table 6). Conversely, the range in AUCs for models fitted with
the multi-temporal data and tested with event data was 0.62–0.79.
When individual event inventories are combined and used to fit the sus-
ceptibility models, predictive performance based on testing with the
multi-temporal data (Fig. 8c) produced mean AUC values of 0.68–0.74.
n (LR) and random forest (RF) models with different input variables using manual versus
areas 1–3) and multi-temporal (study areas 4–6) landslide inventories.

Hawke's bay Combined event Multi-temporal

BIA Manual OBIA Manual Manual

.63 0.74 0.66 0.69 0.71

.74 0.77 0.69 0.76 0.75

.75 0.79 0.71 0.77 0.77

.63 0.75 0.67 0.70 0.72

.74 0.77 0.70 0.76 0.75

.75 0.81 0.73 0.78 0.77



Fig. 6. Comparison of landslide susceptibility based on the means of logistic regression (LR) versus random forest (RF) model predictions (n=25 iterations each) with topographic, land
cover and rock type inputs and manual inventory data for the Waikato, Whanganui, and Hawke's Bay event study areas.
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Fig. 7. Histograms of mean modelled pixel susceptibility values for the Waikato, Whanganui and Hawke's Bay study areas comparing logistic regression versus random forest model
predictions shown in Fig. 6.
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This compares with 0.65–0.74 from fitting with multi-temporal data
and testing with combined event data (Fig. 8d). The logistic regression
model outperformed random forest when fitting and testing with data
from different study areas in 22 out of 24 comparisons (Table 6). This
contrastswith theminor outperformance by random forest over logistic
regression using cross-validation within a single study area (Table 5).
Fig. 8. ROC curves for logistic regression and random forest models. Top row: models fitted a
a) combined event data from study areas 1–3 versus b) multi-temporal data from study area
with combined event data and tested with multi-temporal data versus d) fitted with multi-tem

12
Increasing thenumber of input variables did not necessarily improve
performance when testing with data from different study areas. The
combination of land cover with topographic variables improved model
performance, but this decreased with the addition of rock type
(Table 6; Fig. 8), in contrast to cross-validation results fromwithin a sin-
gle study area. Model fitting with multi-temporal data tended to
nd tested using cross-validation with data from within the same study area comprising
s 4–6. Bottom row: models fitted and tested in different study area comprising c) fitted
poral data and tested with combined event data.



Fig. 9. Comparison of a) logistic regression and b) random forest model predictive performance based on the combined events (study areas 1–3) versusmulti-temporal (study areas 4–6)
landslide inventories using different sample sizes as well as all data with topographic, land cover, and rock type inputs.
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outperform fitting with event data using the combination of topo-
graphic and land cover input variables that produced the highest
AUCs, but this was reversed with inclusion of rock type (Table 6). The
proportion of presence/absence data available for testing (ranging
20–97%) was reduced with the addition of rock type due to the absence
of equivalent rock types in both fitting and testing datasets. Combining
event inventories increased the range of rock types available for testing
with the multi-temporal data to 97%, whereas the multi-temporal in-
ventory is less representative of the range of rock types and this limited
the data available for testing to 20–70% of the event presence/absence
data. By comparison, the inclusion of land cover produced only a
minor reduction in the corresponding data available for testing (range
86–100%).

4. Discussion

The shallow landslide inventories assembled here are consistent
with data from other landslide-triggering rainfall events in New
Zealand. For instance, Crozier (2005) reported a median landslide den-
sity of 30 landslides km−2 and a range of 6–478 landslides km−2 based
on a collation of landslide-triggering rainfall events. These data compare
with densities of 43–155 scars km−2 for storm events recorded in the
present study. De Rose (2013) found that the mean and median scar
areas ranged between 46–129 and 32–98 m2, respectively, based on a
historic reconstruction of landslide events in Wairarapa hill country
on the North Island. These scar areas are comparable to values obtained
for the six study areas presented here (Table 3), where the ranges in
mean and median scar areas were 95–181 m2 and 50–106 m2, respec-
tively. The small size of scars formed by these shallow landslides under-
scores the need for high-resolution imagery to ensure detection of scar
features. Imagery with a pixel resolution of 10 m or greater risks signif-
icantly under-estimating the spatial occurrence of shallow landslide
scars.

The OBIA method for mapping landslide scars was previously ap-
plied to the SE Pahiatua study area and comparedwithmanualmapping
(Hölbling et al., 2016). For natural-colour images, these authors re-
ported landslide detection rates using OBIA of 83 and 93% based on
the intersection of landslide scars. This compareswith 62–81%detection
rates for study areas 1–3 in the present study. Our application of OBIA
for landslide classification represents a significant increase in the size
of mapping area from 10.1 km2 in Hölbling et al. (2016) to 121–178
13
km2. The increase in study area size is associated with increased diver-
sity in land cover, variations in soil colour within landslide scars/
deposits, and the presence of rocks that complicated spectral-based
landslide classification, which may in part account for the lower detec-
tion rates and higher number of false positives. In addition, no manual
refinement was applied in the present study, whereas this formed
part of the procedure applied by Hölbling et al. (2016). Semi-
automated mapping was also previously performed for the wider
Hawke's Bay region affected by the April 2011 storm event using
lower resolution (5m) RapidEye imagery (Jones et al., 2011). However,
the resolution was insufficient to allow separation of scars and debris
deposits and resulted in aminimumdetection size of 100m2, which ex-
ceeds themedian scar size of 84m2 for this study area based onmanual
mapping from VHR imagery.

Rainfall triggering thresholds were evidently exceeded across most
of the event study areas given the distribution and number of landslides
observed (Fig. 2). Using historic records of landslide events and rainfall
data in New Zealand, Glade (1998) estimated that events with >120
mm in 24 h were very likely to trigger landslides, while 125–200 mm
over 48 h has been identified as a landslide response threshold (Reid
and Page, 2002; Basher et al., 2020). Both the Whanganui and Hawke's
Bay events exceed the 24 h threshold, whereas Waikato exceeded the
minimum 48-h threshold value. Event landslide scar density (43–155
scars km−2) increases with the maximum ARI (10–20 to >250 years)
and generally corresponds with improving model predictive perfor-
mance (Table 5). This is consistent with an increasing proportion of
slopes failing as storm magnitude increases, which enhances the
model's ability to discriminate stable and unstable land. It also fits
with the conceptual zonation of landslide response according to storm
rainfall, as per Crozier (2017)'s cell model for regional landslide trigger-
ing events. However, in the present study, these zones correspond to
areas mapped within discrete storm events rather than a gradient
within a single event.

Model performance in the present studywas improved compared to
the few previous studies of landslide susceptibility in New Zealand. For
example, the heuristic shallow landslide susceptibilitymodel developed
by Dymond et al. (2006) following a large storm in February 2004 over
the Manawatu region on the North Island was evaluated using SPOT5
imagery with 10-m resolution by applying unsupervised classification.
This approach could not separate scars from debris deposits and instead
relied on an algorithm to assign pixels to scars. The authors reported



Fig. 10. Comparison of shallow landslide susceptibility maps based on the mean of logistic regression model predictions (n= 25 iterations) with topographic, land cover, and rock type
inputs for manual versus OBIA derived landslide inventories.
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Fig. 11. Histograms of mean modelled pixel susceptibility values for the Waikato, Whanganui and Hawke's Bay study areas comparing logistic regression model predictions based on
manual versus OBIA landslide inventories shown in Fig. 10.
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only 26% of pixels classified as landslides occurred on land classed as
susceptible, while an alternative accuracy assessment based on hillsides
(assumed to be susceptible if >25% by area was susceptible) increased
accuracy to 58%. This compares with cross-validation accuracies in the
present study that range 67–73 and 67–74% from the logistic regression
and random forest models, respectively, using all explanatory variables
for different inventories derived from manual mapping using higher
resolution imagery (0.4–0.75 m). Dymond et al. (2006) noted that use
of a slope threshold (range 24–28°) was a poor approximation for sus-
ceptible terrain. They also considered all land with woody vegetation
as non-susceptible. In contrast, the statistical modelling approach
adopted here does not assume that there is no susceptibility below a
fixed slope threshold or for slopes under woody vegetation. The latter
can experience landslides but at much lower spatial densities than
grassland areas (Glade, 1998; Dymond et al., 2006).

Other quantitative studies of landslide susceptibility in New Zealand
do not explicitly focus on shallow landslides in hill country terrain.
Schicker and Moon (2012) employed logistic regression and weights
of evidence methods with an inventory of predominantly large land-
slides and reported AUC values of 0.71–0.75. Kritikos and Davies
(2015) examined rain-triggered shallow landslides in themountainous
western Southern Alps of New Zealand, which contrasts with hill coun-
try that forms the focus of the present study. These authors reported
AUC values ranging 0.71–0.73. By comparison, mean AUC values from
cross-validation using all explanatory variables in the present study
showed modest improvement based on combined event and multi-
temporal manual inventories (range 0.77–0.78, Table 5), with a range
in AUC values for individual event study areas of 0.73–0.81. The future
Table 6
Comparison ofmean AUC values based on cross-validation for logistic regression (LR) and rand
tested with multi-temporal data (combined study areas 4–6) versus b) fitted with combined
1–3). P refers to the percentage of presence/absence points for which input variable data is av

Model validation Input variables W

LR

a. Event-based models tested with combined multi-temporal data T 0.
T + LC 0.
T + LC + R 0.

b. Multi-temporal-based model tested with event data T 0.
T + LC 0.
T + LC + R 0.
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availability of regional LiDAR-derived DEMs in New Zealand should en-
able further improvement in susceptibility modelling through better
representation of topographic inputs.

Model comparison showed only minor improvement in predictive
performance by random forest over logistic regression, whereas there
were notable differences in the landslide susceptibility maps (Fig. 6)
and histograms of pixel probability values (Fig. 7). Susceptibility maps
based on logistic regression produce smoother prediction surfaces com-
pared to random forest,where predictions are not a continuous function
of input variables (Brenning, 2005; Goetz et al., 2015). Several studies
report better prediction performance for random forest compared
with other susceptibility models (Goetz et al., 2015; Pourghasemi and
Rahmati, 2018). However, in the present study, this was reversed
when random forest models were fitted and tested with landslide
inventories from different study areas (Table 6). Under these testing
conditions, random forest underperformed logistic regression in 22
out of 24 comparisons. This suggests the random forest models are
prone to over-fitting, also noted by Brenning (2005), resulting in poorer
performancewhen fitting and testingwith landslide data from different
study areas.

Landslide susceptibility models fitted using manual inventory data
consistently outperformed those using OBIA-derived data. This differ-
ence in performance reflects the number of false positives in the OBIA
landslide inventories, particularly for the Waikato and Hawke's Bay
study areas. We applied no manual refinement to semi-automated
mapping results to provide a reproducible base measure of susceptibil-
ity model performancewhen using OBIA-derived inventories. Nonethe-
less, despite user's accuracies ranging 45–55% for OBIA mapping, the
om forest (RF)models: a) fittedwith event landslide inventories from study areas 1–3 and
multi-temporal data from study areas 4–6 and tested with event inventories (study areas
ailable to enable prediction and testing.

aikato Whanganui Hawke's Bay Combined events

RF P LR RF P LR RF P LR RF P

70 0.68 100 0.70 0.69 100 0.70 0.69 100 0.70 0.68 100
73 0.70 90 0.73 0.71 90 0.72 0.71 99 0.74 0.71 99
71 0.67 37 0.71 0.66 37 0.71 0.69 97 0.73 0.70 97
66 0.64 100 0.65 0.64 100 0.72 0.70 100 0.68 0.67 100
70 0.68 96 0.79 0.76 100 0.74 0.73 86 0.74 0.72 90
68 0.66 70 0.74 0.72 20 0.62 0.64 49 0.65 0.66 45
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relative reduction of 6–11% in model predictive performance based on
OBIA (AUC = 0.63–0.75) versus manual (AUC = 0.67–0.81) landslide
inventories is low by comparison. This suggests landslide susceptibility
analysesmay be relatively insensitive tomoderate classification error in
semi-automated mapping, at least when using large inventories. This
supports use of OBIA techniques for the acquisition of landslide inven-
tory data. We recommend that OBIA form part of a hybrid approach
combining semi-automated mapping with manual refinement
(Hölbling et al., 2016). The latter should involve a systematic process
for checking and refining outputs along with reporting of the resulting
improvement in classification accuracy. The use of OBIA has consider-
able potential benefit in reducing the time and cost of acquiring land-
slide inventories, particularly for regional landslide events where the
area affected and number of landslides are significant barriers to the ac-
quisition of data required for susceptibility modelling.

Multi-temporal landslide inventories are generally considered the
preferred source of landslide information for susceptibility modelling
(Reichenbach et al., 2018). However, we did not find consistent improve-
ment in model predictive performance when using the multi-temporal
versus event inventories. This lack of distinct improvement inmodel per-
formance may reflect the event-scale landslide densities, which, if suffi-
ciently high, could reduce the relative benefit of using a multi-temporal
inventory for susceptibility modelling. Moreover, we found that the
smaller multi-temporal study areas were less representative of the
wider range of terrain captured in the event study areas. This issue of rep-
resentativeness partly reflects the greater time and cost involved in ac-
quiring and processing repeated aerial photographs and mapping
landslide scars for multiple time periods, thus constraining the number
and size ofmulti-temporal study areas used to build landslide inventories
that may limit the potential wider utility for susceptibility prediction.

In comparing models fitted and tested with landslide data from dif-
ferent study areas, a reduction in predictive performance was observed
with the inclusion of rock type, irrespective of the model or inventory
tested (Table 6). This reduction in performance illustratesmodel depen-
dency on the characteristics of specific study areas thatmay limit poten-
tial spatial transferability without incurring a significant loss in
performance (cf. Petschko et al., 2014). Rock type is effectively a proxy
for potential differences in soil properties such as shear strength and hy-
draulic conductivity that may directly affect susceptibility to shallow
landsliding (Crozier et al., 1980) but which lack spatial representation.
Differences in these properties of soils formed on apparently equivalent
rock types between study areas may have contributed to the reduced
performance, as well as potential errors in the mapping of rock type.
These differences may occur in part due to contrasts in weathering in-
tensity that produce a range in soil properties for the same rock type
(cf. Dixon et al., 2016). This finding indicates the importance of
representing the same mapped rock type across multiple study areas
to capture this variability in the absence of relevant data on soil proper-
ties from higher resolution mapping for use in susceptibility modelling.

We recognise other opportunities may stem from using multi-
temporal inventories for investigating rainfall-initiated landslide sus-
ceptibility, such as testing long-termmodel performance and assessing
possible changes in the distribution of landslides in a study area over
time (Reichenbach et al., 2018). In contrast, event inventories present
a challenge for susceptibilitymodelling by reflecting patterns in individ-
ual storm rainfall as well as landscape controls on the landslide re-
sponse. However, selection of event study areas with knowledge of
storm rainfall patterns and impacts reduces the extent to which a lack
of landslide responsemay be incorrectly attributed to low susceptibility
rather than insufficient rainfall. The present study demonstrates that
susceptibility modelling with event inventories can produce compara-
ble predictive performance to models using multi-temporal records.
This finding may depend on a) event and multi-temporal inventories
exhibiting comparable landslide densities and b) negligible land cover
change over the interval covered by the multi-temporal inventory. Re-
cent event inventories may also benefit from availability of VHR
16
imagery and data for explanatory variables that are temporally consis-
tent with the mapped storm event (e.g. repeated land cover mapping)
as well as spatial information on storm rainfall magnitude-intensity
(e.g. from rain radar).

5. Conclusion

We present the first comparison of landslide susceptibility model
performance based on manual versus OBIA derived landslide invento-
ries. Evaluation of OBIA for semi-automated landslidemapping showed
mixed results in terms of classification accuracy, where producer's and
user's accuracies ranged 62–81 and 45–55%, respectively. These results
contain no manual refinement and thus provide a reproducible base
measure of OBIA classification performance. Despite thesemoderate ac-
curacies, the relative reduction of 6–11% in predictive performance of
the susceptibility models based on OBIA versus manual inventories
was low by comparison, and the spatial patterns in modelled suscepti-
bility were generally similar. For future applications, we recommend a
hybrid approach combining OBIA with a systematic manual refinement
procedure to improve on this base level of performance.

The random forest model produced slightly better prediction perfor-
mance compared with logistic regression when tested within the same
study area. However, this was reversed and logistic regression mostly
outperformed random forest when the models were fitted and tested
with data from different study areas. Model predictive performance was
comparable for event versus multi-temporal records based on cross-
validationwithin the same study area. This may be explained by the den-
sity of shallow landslides within event study areas that reduced an ex-
pected improvement in model performance when using a multi-
temporal inventory. In contrast, fitting models with multi-temporal data
and testing with event datasets tended to outperform fitting with event
data using the combination of topographic and land cover input variables,
but this was reversedwith inclusion of rock type. Thismay reflect smaller
multi-temporal study areas that are less representative compared to the
combined event inventories that span a wider range of terrain.

Our results highlight both the challenges associated with semi-
automated landslide detection over large areas as well as the opportu-
nity to use OBIA for efficient data collection without necessarily
compromising the resulting susceptibility maps. Given the significant
time and cost impediments to the preparation of multi-temporal land-
slide inventories, we see future targeted acquisition of multi-event
landslide inventories from different locations as a viable alternative ap-
proach. This could enhance landslide susceptibility modelling by using
the latest VHR satellite imagery in combination with hybrid OBIA-
manual mapping to represent a wider range of terrain than would be
possible with typically fewer and smaller multi-temporal datasets
based on historic imagery.
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