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The data deluge: challenge or opportunity?
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Computer vision at Manaaki whenua
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The deep learning revolution

Machine Learning

Feature extraction Classification

Deep Learning
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Deep learning for remote sensing
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Goal: map urban built form change over time




Approach: deep learning segmentation ®
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 MWLR pipeline processes input data into image/label mask tile pairs for training/prediction
» Deep learning encoder-decoder network (Unet64) learns to generate mask tiles (512x512 pixels)
» Masks stitched back together (50% overlap)



Training data: LINZ 2016
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Imagery: 2016 0.3m aerial photos Labels: NZ building outlines



Historic imagery: Retrolens/LINZ
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The challenge: training the model 4
How to train the network for all time periods and cities?

e (Can a model trained on 2016 be used for historic B&W imagery?
« (Can training transfer between cities?




Transfer between time periods
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The issue: inconsistent image quality

2016: digital 1980: film 1940: film

Standardised brightness/contrast Flat contrast Variable brightness/contrast
Minimal noise Grainy Grainy

Sharp focus Moderate focus Variable/poor focus

High spatial accuracy Moderate spatial accuracy Spatial distortion/displacement

Shadows Short shadows Long shadows



The solution: imperfect training data

Train model on historic
Imagery but current
labels?

— Buildings may have been
built, demolished or
modified

— Image may be displaced
because of distortion issues

Select tiles with
“reasonable” match

— What is “reasonable”?
— Enough tiles?




Segmentation label error tolerance 9




Imperfect data results: 1940
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Wellington: 1940 image 1940 imperfect data mask

Training on 1940s imagery with imperfect data significantly improved



Imperfect data results: 1980

Wellington: 1980 image 2016-based mask 1980 imperfect data mask

1980: significantly improved recall (but reduced shape precision)
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Clty transfer Welllngton to Auckland

Wellington models transfer well to Auckland



Hamilton




Auckland




Wellington and Lower Hutt
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