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A B S T R A C T   

Shallow, rainfall-triggered landslides are an important catchment process that affect the rate and calibre of 
sediment within river networks and create a significant hazard, particularly when shallow landslides transform 
into rapidly moving debris flows. Forests and trees modify the magnitude and rate of shallow landsliding and 
have been used by land managers for centuries to mitigate their effects. We understand that at the tree and slope 
scale root reinforcement provides a significant role in stabilising slopes, but at the catchment scale root rein
forcement models only partially explain where shallow landslides are likely to occur due to the complexity of 
subsurface material properties and hydrology. The challenge of scaling from slopes to catchments (from 1-D to 2- 
D) reflects the scale gap between geomorphic process understanding and modelling, and temporal evolution of 
material properties. Hence, our understanding does not, as yet, provide the necessary tools to allow vegetation to 
be targeted most effectively for landslide reduction. This paper aims to provide a perspective on the science 
underpinning the challenges land and catchment managers face in trying to reduce shallow landslide hazard, 
manage catchment sediment budgets, and develop tools for catchment targeting of vegetation. We use our un
derstanding of rainfall-triggered shallow landslides in New Zealand and how vegetation has been used as a tool to 
reduce their incidence to demonstrate key points.   

1. Introduction 

Shallow landslides are natural geomorphic processes that shape the 
landscape, are important as agents of hillslope and landscape-scale 
sediment transfer and are also hazards to life and infrastructure 
(Spiker and Gori, 2003; Milledge et al., 2014; Parker et al., 2016; Sidle 
and Bogaard, 2016). They occur in steep mountainous and hilly land
scapes that are covered in a mantle of regolith (e.g. Glade, 2003; Forbes 
and Broadhead, 2013; García-Ruiz et al., 2017) and are commonly 
triggered by rainstorms (e.g. Rickli and Graf, 2009) or earthquakes (e.g. 
Croissant et al., 2019). Such landslides transfer sediment from hillslopes 
to channels (Benda and Dunne, 1997a; Gabet and Dunne, 2003), are a 
disturbance mechanism for forest ecosystems (Hack and Goodlett, 
1960), and develop catchment topography (Stock and Dietrich, 2003). 
Additionally, shallow landslides affect humans by rapidly changing the 
volume of sediment in channels and impacting river water quality, 

creating hazards to infrastructure and human lives, and loss of soil1 

resulting in declining productivity of grasslands (Rosser and Ross, 2011) 
and forests (Heaphy et al., 2014). 

Like most environmental phenomena, slope instability encompasses 
a complex set of processes, of which a small subset is usually capable of 
explaining most of the observed pattern of events (Collison and Griffiths, 
2004). Rainfall-triggered shallow landslides commonly occur on steep 
slopes. They can be triggered by heavy rainfall of either short duration 
with high rainfall intensity, or long duration with lower intensity (e.g. 
Guzzetti et al., 2004). The initiation of shallow landslides depends on 
the complex interactions between the physical properties and avail
ability of the regolith, climate, vegetation, land use, hillslope hydrology, 
and below-ground ecologic processes (Wu, 1995; Rickli and Graf, 2009). 
Attempts to characterise the rainfall thresholds necessary to trigger 
shallow landslides also suggest high variability (Caine, 1980; Guzzetti 
et al., 2007; Segoni et al., 2018). 
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1 We define a shallow landslide as any landslide that occurs within the material that forms above the bedrock including soil, saprolite, and colluvium. To provide a 
consistent nomenclature, we will define this material as regolith, noting that this includes much of the mobile component of the regolith in many cases (Anderson 
et al., 2012). Where we use the term soil, it is to denote the agriculturally productive component of the regolith. 
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Shallow landslides are the most common type of slope failure in 
many countries such as New Zealand, accounting for 90% of all land
slides (Crozier, 2005; Glade, 2003; Fuller et al., 2016). In general terms, 
shallow landslides typically are complex slide-flow landslides (Hungr 
et al., 2014). These failures are characterised by a pre-defined, planar 
sliding surface at a depth of up to 2.0 m, usually (but not exclusively) 
reflecting the boundary between regolith and bedrock (Hungr et al., 
2014). Many rainfall-triggered landslides are also associated with both 
historical (Marden et al., 2014) and contemporary forest clearance (e.g. 
timber harvesting - Phillips et al., 2012; Vergani et al., 2016) or wildfires 
(Istanbulluoglu et al., 2004). They are both part of natural landscape 
response to high rainfall events, or landscape evolution over long time 
periods (Dymond and de Rose, 2011; Cerovski-Darriau et al., 2014; 
McCoy, 2015; Sidle and Bogaard, 2016) and a response to anthropogenic 
land use practices (Glade, 2003). 

Across geomorphic timescales (103–105 years) vegetation type and 
its history strongly controls the potential for shallow landsliding by 
producing regolith through the action of roots, transporting that collu
vium through processes such as tree throw (Roering et al., 2010) and by 
adding stability to a slope through root reinforcement, that provides an 
effective cohesion to slopes (Hubble et al., 2013). Tree throw controls 
the rate of sediment transport by soil creep and has a strong control on 
local topography in many places (Roering et al., 2003; Hurst et al., 2013; 
Gabet and Mudd, 2010; Gabet et al., 2015). When considered within the 
geomorphic framework, vegetation particularly trees and forests, can 
help stabilise slopes reducing the incidence of shallow landslides in the 
short term (101–103 years) (Sidle et al., 1985; Phillips and Marden, 
2005; Greenway, 1987; Stokes et al., 2014), but in the longer term 
(103–105 years), trees promote a thick regolith that is landslide prone 
(Gabet and Dunne, 2002; Casadei and Dietrich, 2003; Milledge et al., 
2014). 

At shorter timescales vegetation is an important agent for stabilising 
steep, regolith-mantled slopes by reinforcing the regolith with roots 
(Phillips and Watson, 1994; Gabet and Dunne, 2002; Montgomery et al., 
2000) and, to a smaller extent, by modifying soil moisture and subsur
face hydrology through transpiration, canopy interception, redistribu
tion of rain water, and development of preferential flow paths via live 
and dead root systems (Hwang et al., 2015; González-Ollauri and 
Mickovski, 2017). However, during extreme rain events, forest cover 
may have a reduced effect on reducing the frequency of landslides whose 
failure plane is well below the majority of the rooted regolith (Forbes 
and Broadhead, 2013). Natural (e.g. fire) or human driven (e.g. logging) 
removal of woody vegetation has been shown to lead to an increase in 
shallow landslide activity (e.g. O'Loughlin and Pearce, 1976; Mont
gomery et al., 2000; Roering and Gerber, 2005; Sidle, 1992). 

The need to place trees and forests strategically within catchments or 
watersheds to limit shallow landslides and their impacts while 
continuing to remain a challenge, has sparked several approaches over 
the last half century to understand:  

1. shallow landslide susceptibility (e.g. Schmidt et al., 2001; van 
Westen et al., 2008; Reichenbach et al., 2018),  

2. landslide triggering thresholds (e.g. Guzzetti et al., 2004, 2008; 
Segoni et al., 2018),  

3. effects of both trees and forests on landslide frequency and severity 
(e.g. Phillips and Marden, 2005; Schmaltz et al., 2017; Guo et al., 
2019),  

4. models including spatially-explicit landslide and sediment budget 
models (e.g. von Ruette et al., 2011, 2013; Cislaghi and Bischetti, 
2019), and  

5. management guidelines (e.g. Swanston, 1985; Chatwin et al., 1994; 
Jordan, 2002) or tools (e.g. Dymond et al., 2006; Schwab and 
Geertsema, 2010; Dorren and Schwarz, 2016). 

In this article, we examine how vegetation management can affect 
the frequency and magnitude of shallow landslides at a catchment scale. 

Where appropriate, we use our understanding of shallow landslides in 
New Zealand to demonstrate key points; this being more familiar to the 
authors. We organise the paper into three parts. The first reviews the 
now classical model of how vegetation provides stability to catchments 
through hydrologic and root reinforcement effects (e.g. O'Loughlin, 
1974, 2005; Greenway, 1987; Sidle and Ochiai, 2006; Schwarz et al., 
2010, 2013; Stokes et al., 2014) and consider the challenges of un
certainties and land use histories on catchment slope stability. Secondly, 
we consider landslide susceptibility and hazard under differing vegeta
tion conditions (Guzzetti et al., 2005). We note progress towards land
slide hazard predictions that allow spatially explicit calculations of 
individual landslide probabilities and the challenges of how and where 
planting vegetation might change these probabilities and understanding 
how the frequency and magnitude of rainstorms and landslide events 
might be changing through time. Finally, we consider vegetation and the 
management of catchments, including the difficulty of obtaining reliable 
measurements of subsurface properties that reflect their spatial vari
ability at a catchment scale. This remains a significant challenge when 
trying to integrate geomorphic processes to produce effective manage
ment tools. 

2. Vegetation and landslide triggering at the catchment scale 

Rainfall-triggered shallow landslides are episodic events that can 
impact catchments in various ways depending on their magnitude, 
extent, and timing. Understanding the factors that control rates of 
landsliding and sediment delivery is important for assessing the envi
ronmental risks associated with such events and for predicting the im
pacts of land use on erosion (Benda and Dunne, 1997a, 1997b; Gabet 
and Dunne, 2003; Rengers et al., 2016; McGuire et al., 2016). Landslides 
cause a stochastic delivery of sediment to the upper parts of mountain 
catchments, with the frequency of landsliding being directly related to 
the types of vegetation and their potential losses due to natural (e.g. 
wildfires) or anthropogenic activities (e.g. logging) (e.g. Sidle et al., 
1985). Catastrophic landslide events are often linked to extreme rainfall 
events together with vegetation disturbance. There is a strong causal 
link between the relative rates of root decay and regeneration and the 
timing of landsliding activity via a mechanical reinforcement that has 
been observed in many places (e.g. Wu et al., 1979; O'Loughlin and 
Watson, 1979; Schmidt et al., 2001). 

Vegetation plays an additional role in affecting the hydrology that 
governs shallow landslide triggering. Landslides are triggered by the 
development of pore pressures from vertically directed infiltration from 
intense rainfall, convergent throughflow and/or exfiltration from 
shallow groundwater systems (Iverson, 2000; Montgomery et al., 1997). 
The result of complex hillslope hydrology is that while most shallow 
landslides trigger within convergent topography, where throughflow is 
important (Dietrich et al., 2007), they are not exclusively triggered in 
these areas (Fig. 1). Additionally, there are local effects on stability 
caused by the additional mass of the vegetation (called the surcharge) 
and through perturbations of hydrology caused by interception, tran
spiration, and changes to the structure of the regolith by the addition of 
leaf litter and through roots creating macropores (Ghestem et al., 2011; 
Keim and Skaugset, 2003). 

Numerous approaches have been taken to model landslide initiation 
at a catchment scale, including empirical models based solely on rainfall 
characteristics to more physically-based landslide models in which sta
bility is assessed using the limit equilibrium method and expressed in 
terms of factor of safety analysis (FoS) (e.g. Sidle, 1992; Collison and 
Griffiths, 2004). Distributed, physically-based landslide models have 
become more prevalent with improvements in advanced GIS and DEM 
technology which is allowing the prediction of landslides at the catch
ment or regional scale (Montgomery and Dietrich, 1994). These some
times couple ecohydrologic models to estimate subsurface vegetation 
parameters like rooting depth (Sivandran and Bras, 2013). However, the 
limiting factor for most of these models is the sparse data available for 
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the input parameters, many of which are not available at the scales at 
which the models can now be applied. This is starting to be addressed 
with probabilistic models that use dynamic parameters to deal with the 
lack of data and uncertainty (e.g. van Zadelhoff et al., 2021). 

Physically-based modelling of shallow landslide potential, regardless 
of model complexity, relies on the limit equilibrium method introduced 
by Mohr-Coulomb. The most common application of this method as
sumes an infinite slope (e.g. Montgomery and Dietrich, 1994; Pack et al., 
2001; Baum et al., 2008). The limit equilibrium method considers the 
landslide potential to reflect the balance of colluvium shear force and 
strength. In its simplest, 1-dimensional form this balance is reflected as a 
factor of safety (FoS) 

FoS =
c′

+ (γzcos2β − u)tanϕ′

γzsinβcosβ
,

with c′ representing the effective cohesion, γ is the unit weight of col
luvium, z is colluvium depth, β is the slope angle, u is the pore pressure, 
and ϕ′is the effective friction angle. The addition of plant roots, which 
reinforce the regolith mostly via the friction between the root's surface 
and the regolith (e.g. Schwarz et al., 2010; Vergani et al., 2017; Cohen 
and Schwarz, 2017), provides additional shear strength in excess of that 
provided by the internal friction of the colluvium, hence is considered as 
a component of the effective cohesion. Vegetation affects all of the terms 
in this equation (even slope angle, e.g. Roering et al., 2003, 2010; Hurst 
et al., 2013) at geomorphic timescales, such that we would expect a 
system that has not been perturbed by land use or climate change, to 
reach an equilibrium in terms of the rate of sediment discharged from 
hillslopes by shallow landslides and creep processes and that generated 
by soil production mechanisms such as tree throw (Dietrich and Dunne, 
1978). At shorter, management timescales, the three terms that are most 
influential on catchment-scale slope stability are the effective cohesion, 
regolith thickness, and pore pressure (D'Odorico and Fagherazzi, 2003). 
Possibly the most important, and poorly understood relationship is that 
between the effective cohesion and the regolith thickness that can be 
maintained. The magnitude of this additional effective cohesion has 
been discussed with models evolving over many decades from relatively 
simple approaches (Wu et al., 1979) to more complex models where root 
reinforcement is assessed across scales from a single root to a tree root 
system to a stand of trees (Schwarz et al., 2010; Schwarz et al., 2013, 
2014; Hales, 2018), to physically based distributed models as outlined 
above (e.g. Hwang et al., 2015) and those that are designed to assist 
practitioners (Dhakal and Sidle, 2003; Schwarz et al., 2014, 2016; Dazio 
et al., 2018; Bischetti and Chiaradia, 2010; Chiaradia et al., 2012; 
Cislaghi and Bischetti, 2019). 

The addition of effective cohesion, such as that provided by plant 
roots, creates a regolith depth dependence on failure that is higher than 
that provided by earth pressure in cohesionless regolith Milledge et al., 
2014). The importance of this dependence can be illustrated by plotting 
the minimum regolith depth and slope angle under hydrostatic pore 
pressure conditions (Crozier et al., 1990; D'Odorico and Fagherazzi, 
2003; Parker et al., 2016) (Fig. 2). Locally, tree roots generate effective 
cohesion values of up to 50 kPA (Schmidt et al., 2001), such that a 
landscape occupied by forest will contain stable colluvium with thick
nesses of >1 m, under most pore pressure conditions. However, rapid 
changes in vegetation type, particularly the conversion of forest to other 
land use types, can dramatically lower the effective cohesion and make 
slopes considerably more unstable. Additionally, the relationship be
tween cohesion, and colluvium depth may affect the catchment response 
to long-term climate-driven changes in precipitation, such that the 
relatively slow recovery of regolith thickness after a shallow landslide 
provides a stronger constraint on landslide potential than changes in 
landslide frequency (Parker et al., 2016.) This work demonstrates a 
stronger need for effective methods for understanding the subsurface 
structure of catchments to improve their management (Brantley et al., 
2017). 

Recent advances in our process-based understanding of the role of 
vegetation and physical constraints such as earth pressure has improved 
our understanding of the controls on shallow landslide size and depth 
(Milledge et al., 2014). Better process understanding, combined with 
efficient methods for analysing clusters of unstable cells that can esti
mate landslide size (Bellugi et al., 2015). Prediction of locations of 
landslides within a particular rainstorm event remains challenging, 
highlighting issues of parameterisation, calibration and verification, and 
computation intensity. Parameterising subsurface mechanical and hy
draulic properties in mountainous terrain remains a significant chal
lenge, particularly because of the heterogeneity of these properties 
across these landscapes, the lack of systematic empirical measurement 
of these parameters for slopes, and poor understanding of the statistical 
distribution of properties at this scale (Burton and Bathurst, 1998). 
These issues of parameterisation mean that calibration of models is often 
best done using the historical landslide record. The quality of the 
parameterisation (and verification) of these models depends on the 
completeness and length of the record. 

Fig. 1. Shallow landslides near Whanganui, New Zealand (Photo Harley Betts).  

Fig. 2. Analytical solutions of the maximum stable regolith depth for hydro
static pore pressures under different effective cohesion values. These solutions 
show the striking role that cohesion, which in hillslope regolith is often 
dominated by root reinforcement, has on stabilising slopes. Similarly, it high
lights how even small losses and gains in effective cohesion could cause dra
matic changes to the stability of a slope. In this example, friction angle is 30 
degrees, unit weight of soil is 17,600 N/m3. This should probably be N m-3. 
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Stochastic modelling of shallow landslides at a catchment scale has 
provided an opportunity to test our understanding of how landslide 
frequency and magnitude and resulting sediment fluxes respond to 
naturally variable rainfall and disturbance. The competition between 
the recovery of soil depths at millennial timescales and the stochastic 
rainfall and fire events that recur at decadal to centennial timescale sets 
the spatial pattern and magnitude of shallow landslide events (Parker 
et al., 2016; Benda and Dunne, 1997a). These studies show that the 
number of potential failure sites, and thus the long-term frequency of 
landsliding was set by the rate of soil depth recovery. The relationship 
between the antecedent effects of fire, which reduces root strength, and 
rainfall governed the magnitude and location of individual landsliding 
events (Benda and Dunne, 1997a). When the sediment generated by 
these events was routed through catchments by stochastic flooding 
events, large changes to bed topography (on a scale of metres) were 
created in lower order channels but were barely detectable in 5th order 
catchments (Benda and Dunne, 1997b). Istanbulluoglu et al. (2004) 
modelled how changes in forest stand density and productivity condi
tions (manifested by different root cohesion values) influence the 
magnitude and frequency of sediment delivery from gully erosion, 
shallow landsliding and debris flows. Their simulation results repro
duced long-term (10,000 year) average sediment yields. When the 
model was perturbed by wildfires, rapid reduction in root cohesion 
caused a more intense sedimentary response than forest harvesting. 
Sediment fluxes were dominated by episodic events whose timing was 
controlled by vegetation root cohesion and density (Istanbulluoglu et al., 
2004). This work demonstrated the stochastic nature of the extreme 
precipitation and deforestation events that drive landslide events, while 
also noting that there is an averaging effect of both the sediment signal 
of landsliding downstream and through time. Hence, reconciling long- 
term average sediment yields versus short-term stream sediment fluxes 
is difficult due to the relatively short nature of the observational record, 
and the unreliable nature of the sedimentary records of the upper parts 
of catchments. 

Where sediment yields have been compared across timescales, we 
have observed both an increase and decrease in short-term sediment 
yield relative to the long term. For example, Kirchner et al. (2001)) 
found that long-term erosion rates over 10,000-year time scales when 
compared to short-term measurements (10–84 years) produced sedi
ment yields on average 17 times higher than the short-term stream 
sediment fluxes. The authors concluded that this significant difference 
suggests that sediment delivery from mountain watersheds is extremely 
episodic, and that long-term sediment delivery is dominated by cata
strophic rare events (Kirchner et al., 2001). Hence, lower order streams 
that are prone to landsliding can expect large, rapid changes in bed 
elevation at the annual to decadal timescale over which catchment 
managers are interested. Where catchment-scale landscape evolution 
models have included short-term disturbances to vegetation, there is a 
commensurate, short-term increase in sediment yields (Istanbulluoglu 
et al., 2004; Guthrie, 2009). These studies highlight that land use change 
such as due to forest harvesting may have a greater impact on catchment 
sediment budgets than climate change. At small catchment and storm 
event scales, comparisons of sediment yield under different vegetation 
cover, and studies of the impact of deforestation, show that forested 
catchments yield 50–80% less sediment than pasture catchments (e.g. 
Hicks, 1990; Fahey et al., 2003) and can have a mean annual sediment 
yield up to 95% less than pasture catchments (Hicks, 1990). 

Historical sediment records within the well-studied Waipaoa River 
catchment in New Zealand have provided important observational evi
dence of the role of reforestation on landsliding driven sediment yields. 
Reid and Page (2002) analysed the effectiveness of reforestation in 
reducing landslide contribution to sediment load of the Waipaoa River 
catchment. They suggested that shallow landslides contribute about 
15±5% of the suspended sediment load in the river and that 75% of the 
sediment production from the landslides occurs during storms with 
recurrence intervals of less than 27 years. They also suggested 

reforestation between 1960 and 1995 had produced a 10% decrease in 
sediment from landslides but had only reduced total sediment load by 
2%. If the most susceptible areas in the catchment were targeted, the 
sediment generation rate from landsliding could be reduced by 40% but 
it would result in only a 6% reduction in the sediment load of the 
Waipaoa because of the importance of gully and streambank erosion in 
this catchment (Hicks et al., 2000). Marden (2012) argued that refor
estation with exotic pines in the erosion-prone East Coast region of New 
Zealand successfully stabilised existing erosion forms and prevented the 
initiation of new ones. Using modelled reforestation scenarios, he indi
cated that sediment generation from earthflows and shallow landslides 
would be negligible within 8–10 years of planting. Marden et al., 2014) 
quantified the effectiveness of exotic reforestation as an erosion control 
strategy on both sediment generation in the headwaters of the Waipaoa 
River in New Zealand and on downstream sediment yield over the 
period 1939–1988. Additionally, studies of landslides during large storm 
events in New Zealand show the effect of localised erosion control by 
vegetation on the sediment delivery ratio (SDR) in a whole farm context 
is typically low, i.e., the amount of sediment delivered to the rivers and 
transported to the catchment outlet is a small proportion of the total 
mass that failed (e.g. Page et al., 1994, 1999; Preston, 2008) and even 
lower when multiple landslide events are considered (Jones and Preston, 
2012). This implies that the impacts of vegetation on landslide contri
bution to sediment yield are likely to be buffered by temporary sediment 
storage in the landscape resulting in less direct influence on sediment 
yield than on hillslope erosion rates. By contrast, erosion from gullying 
processes is often well connected to the stream network and most 
sediment eroded is delivered to the stream network (SDR is close to 1). 

The improvements of physical understanding of shallow landslide 
processes across temporal and spatial scales, has improved our ability to 
predict the magnitudes and frequencies of potential landslide events, yet 
reliably predicting the location of individual landslides remains elusive. 
Increasingly complex and dynamic models of shallow landslide sus
ceptibility have moved beyond the static approach by applying spatially 
and temporally varying distributions of vegetation, colluvium, and hy
drologic properties. Yet computational complexity remains a challenge, 
as does parameterisation. Additionally, we do not have a strong theo
retical or practical basis for including temporal changes in vegetation 
properties due to disturbances such as fire and disease, or how to ac
count for different stages in vegetation growth or density (e.g. Flepp 
et al., 2021). Similarly, our understanding of the spatial distribution of 
regolith depth is extremely limited, with our best estimates coming from 
manual excavation and soil tile probe methods (Reneau et al., 1990; 
DeRose et al., 1991; Hales et al., 2009; Parker et al., 2016; Gabet et al., 
2015). Despite advances in shallow geophysical methods for estimating 
colluvium depths associated with Critical Zone Observatories, there 
remain practical issues of their application in steep catchments (Befus 
et al., 2011; Pazzi et al., 2017). In landscapes with frequent rainfall, the 
temporal distribution of colluvium thickness may limit the rates of 
shallow landslide triggering (Benda and Dunne, 1997a; Gabet and 
Dunne, 2003; Parker et al., 2016), although few studies have attempted 
to understand these dynamics. In particular, landslide events themselves 
can change the susceptibility of the terrain to future events, commonly 
by removing susceptible material and thereby increasing the resistance 
of the terrain (Crozier and Preston, 1999). 

3. Landslide modelling to estimate susceptibility and hazard 

Calculating landslide susceptibility and hazard at the catchment 
scale under varying vegetation conditions has been a core challenge for 
many decades. Given the complexity of the processes governing the 
frequency and magnitude of shallow landsliding and aleatoric and 
epistemic uncertainties in parameters, a range of different approaches 
have been implemented to this challenge. Landslide susceptibility is the 
likelihood of a landslide occurring in an area depending on local terrain 
conditions i.e., estimating where landslides are likely to occur (Guzzetti 
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et al., 2005). By definition, landslide susceptibility is a non-temporal 
concept that refers to locations where landslides preferentially occur 
based on an understanding of the topographic, hydrologic, and material 
properties that act as contributory factors. The factors that control 
landslide susceptibility are topographic (slope steepness, elevation/ 
relative relief, aspect, slope shape/curvature), geologic (lithology, 
strength of bedrock and regolith), vegetation cover or land use, climate 
(annual rainfall, rainfall intensity and duration) and presence of roads 
and infrastructure. Of these factors slope, geology/lithology and rainfall 
are the most important and different combinations of these factors are 
used in the various assessments of susceptibility (e.g. Minder et al., 
2009; Smith et al., 2021). In both the literature and common usage, 
confusion exists between landslide susceptibility and landslide hazard 
and the terms are often used as synonyms despite the words expressing 
different concepts (Reichenbach et al., 2018). Landslide hazard is the 
probability that a landslide of a given magnitude will occur in a given 
period and in a given area. In addition to predicting where a slope failure 
will occur, landslide hazard predicts how frequently it will occur, and 
how large it will be (Guzzetti et al., 2005). 

Landslide susceptibility assessment emerged in the mid-1970s and 
there have been many papers published since using a variety of ap
proaches and methods in different geological and climatic settings (see 
Reichenbach et al., 2018). All approaches are based upon a few as
sumptions: (1) that landslides can be recognised, classified, and mapped 
in the field or by analysing remotely-sensed imagery; (2) landslides and 
their occurrence are controlled by physical laws that can be analysed 
empirically, statistically, or deterministically; (3) for statistical landslide 
susceptibility modelling, the past and present distribution of landslides 
reflects the future distribution of landslides; (4) spatial landslide 
occurrence can be inferred from heuristic knowledge, computed through 
the analysis of environmental information, or predicted using physical 
models. Many of the parameters that form the basis of our understanding 
of slope stability, such as friction or cohesion, have an aleatoric uncer
tainty. However, it is the epistemic uncertainty associated with the 
history of landsliding, past changes to boundary conditions through land 
use or climate changes, and parameters such as regolith thickness and 
pore pressure distributions that provide the greatest limitation on our 
ability to develop predictive tools that might be useful for land man
agers. Landslide susceptibility model performance is often assessed 
using a receiver operating characteristic (ROC) curve, which plots the 
true positive rate against the false positive rate. Measuring the area 
under a ROC is commonly used as an estimate of model performance. 
High ROC values of up to 90% (e.g. Smith et al., 2021) highlight the 
efficiency of many landslide susceptibility methods. 

Approaches and methods for assigning landslide susceptibility can be 
qualitative or quantitative, and direct or indirect. Qualitative ap
proaches are subjective, ascertain susceptibility heuristically, and 
portray susceptibility levels using descriptive (qualitative) terms. 
Quantitative methods produce numerical estimates; in other words, 
probabilities of occurrence of landslide phenomena in any susceptibility 
zone (Guzzetti et al., 1999). These include geomorphological mapping 
(Cardinali et al., 2002), analysis of landslide inventories, heuristic 
terrain and stability zoning (van Westen et al., 1997; Guzzetti et al., 
1999), physically-based models (Montgomery and Dietrich, 1994; van 
Asch et al., 2007; Alvioli and Baum, 2016) and statistically-based clas
sification methods (Guzzetti et al., 1999; van Westen et al., 2008). The 
development of satellite technologies to develop better landslide in
ventories has proven to be an essential tool to improve the quality of the 
empirical basis required for better modelling of catchment landsliding. 
Data from such inventories is necessary to help develop, calibrate and 
validate both aspatial and spatially-distributed conceptual, physical and 
statistical models (e.g. Casadei et al., 2003; Blahut et al., 2010; van den 
Eeckhaut et al., 2011; van den Eeckhaut and Hervás, 2012; Guzzetti 
et al., 2006; Marc et al., 2015). 

3.1. Landslide inventories 

The collection of data following a shallow-landslide event serves 
several purposes including: 

1. determining the geographic extent of “damage”, i.e., which catch
ments are most affected (Page et al., 1999; Dymond et al., 2006), 

2. understanding the triggering mechanisms and factors that contrib
uted to slope failure (Petschko et al., 2013; Zieher et al., 2016),  

3. assessing connectivity to stream networks and delivery of sediment 
and the contribution of landslides to catchment sediment loads/ 
budgets (Trustrum et al., 1999), and 

4. assessment of the on-site and downstream impacts (including eco
nomic costs) (Phillips and Marden, 2005; Dominati et al., 2014). 

Until the rapid expansion of high-quality satellite imagery over the 
past decade, our understanding of the spatial distribution of shallow 
landsliding was largely limited to a few meticulously collected datasets 
or inventories of landslides and rainfall often focused on catchments or 
sub-regions of interest obtained from aerial imagery (e.g. Marden and 
Rowan, 1993; Malamud et al., 2004). Multi-temporal inventories 
generally of smaller areas, were also created from repeated historic 
aerial imagery (Betts et al., 2017). However, the increase in the fre
quency of satellite imagery has complemented these efforts by largely 
improving the capture of where landslides occur, particularly for 
shallow landslides that are too small to accurately map from lower- 
resolution imagery. 

Landslide inventories have allowed an understanding of both the size 
and frequency of individual landslides, as well as the size and frequency 
of landslide events where a single rainstorm may trigger hundreds or 
thousands of shallow landslides (e.g. Cyclone Bola, New Zealand (Hicks, 
1991; Marden and Rowan, 1993); Hurricanes Francis and Ivan, North 
Carolina (Wooten et al., 2016)). Multi-temporal landslide inventories 
have also been extremely important for understanding post-earthquake 
landsliding (Fan et al., 2019; Marc et al., 2015) and increasingly for 
understanding the patterns of rainfall-triggered shallow landsliding 
(Chen et al., 2016). Increasingly frequent landslide inventories allow a 
better understanding of the controls on event magnitude and frequency, 
and path dependencies (Samia et al., 2017). However, multi-temporal 
landslide inventories in forested terrain, unlike for non-forested land
scapes, are scarce (Schmaltz et al., 2017). This results in difficulties in 
establishing empirical relationships between shallow landslides and 
forest/tree cover (density, age, species, etc), especially at the landscape 
and catchment scale. Forests have variations in vegetation species and 
age which influences the variability of root cohesion which can then 
dominate the local stability of landslide-initiation sites (Schmidt et al., 
2001). 

Aerial photo interpretation, and many remote sensing approaches 
have difficulty in detecting small landslides under or within vegetation 
and the portion of visually non-detected landslides in rugged forested 
areas can sum up to 85% of the total number of landslides (Brardinoni 
et al., 2003). In many inventories of rainfall triggered landslides that 
compare landscape response for different land covers or land uses, for
ests or woodlands generally have much lower landslide densities. For 
example, in New Zealand following several regional landslide events, 
forested landscapes have been reported as having fewer landslides and 
lower landslide densities compared to grass covered slopes (Phillips 
et al., 1991; Marden and Rowan, 1993; Bergin et al., 1995; Rosser et al., 
2019). In many places the occurrence of significant landslide events is 
well known with observations and data relating to these events built up 
over decades (Rosser et al., 2017; Zieher et al., 2016; Chen et al., 2015). 
In other areas however, particularly those more remote or less densely 
populated, records do not exist, though the impacts may be no less se
vere. Many landslide events can also affect relatively small areas (<10 
km2) within larger catchments being triggered by cells of high or intense 
rainfall while others are more regional in extent (often related to 
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extensive flooding) affecting much larger areas and producing thou
sands of landslides. These have been called multiple-occurrence regional 
landslide events (MORLEs – Crozier, 2005, 2017). 

3.2. Modelling landslide susceptibility and hazard under differing 
vegetation 

As technology and computing power have progressed, so have ad
vances in how landslide susceptibility is assessed. Reichenbach et al. 
(2018) reviewed statistically-based approaches for landslide suscepti
bility modelling and associated terrain zonation and suggested that 
physically- and statistically-based methods are preferred to determine 
landslide susceptibility in quantitative terms. One of the earliest in
vestigations analysed published data from 73 worldwide examples 
where rainfall intensity and duration had been measured in association 
with the triggering of shallow landslides to develop a minimum rainfall 
intensity-duration threshold for debris flows (Caine, 1980). The concept 
of rainfall thresholds as presented by Caine (1980) built upon earlier 
recognition by Campbell (1975) of the relationship of high intensity 
rainfall in the triggering of shallow landslides and by Starkel (1979) who 
theorized a critical rainfall which was a combination of rainfall intensity 
and duration. 

Subsequent work has continued to refine thresholds for differing 
geological settings using a mix of approaches (e.g. Wilson and Wiec
zorek, 1995; Glade, 1998; Wieczorek and Guzzetti, 2000; Guzzetti et al., 
2007; Frattini et al., 2009; Salciarini et al., 2012; Nikolopoulos et al., 
2014; Palladino et al., 2018; Peruccacci et al., 2017; Segoni et al., 2018). 
Many of these approaches are now focussed on providing support for the 
development of regional landslide early warning systems (e.g. Gariano 
et al., 2018). Choice of parameter inputs is a key challenge for landslide 
susceptibility analysis, particularly geological inputs which may be 
more accurate when lithology is combined with other geological infor
mation (Segoni et al., 2020). There is also some general agreement that 
whatever approach is used to determine susceptibility, fewer classes 
seem to perform better than having many, i.e., adding additional pa
rameters to susceptibility models often doesn't improve their predictive 
performance. A particularly challenging assumption that has only been 
tested in a small number of cases is the issue of path dependency, i.e., if a 
landslide fails in one location, is the probability of a similar failure in the 
same location changed (Parker et al., 2016; Samia et al., 2017). While 
there are observations of repeated landslide triggering, the thinning of 
regolith associated with shallow landslides will certainly change the 
probability distribution of failure at that location, creating an epistemic 
uncertainty leading to what has been termed terrain resistance (Crozier 
and Preston, 1999) or exhaustion. 

Statistical landslide hazard models are developed by analysing the 
distribution of landslides with respect to topographic, geologic and 
hydrologic parameters. These models develop a probability of a land
slide event anywhere within a spatial area (e.g. a catchment), for a given 
rainfall event that is usually expressed as a combined intensity 
(maximum rainfall rate) and duration (a time) (e.g. Malamud et al., 
2004; Guzzetti et al., 2006). These models are used globally and 
represent the simplest method for determining an estimate of landslide 
hazard and are particularly useful where the hazard estimate does not 
depend on spatial parameters. For example, when estimating debris flow 
hazard at the mouth of a catchment, it may not matter where in the 
catchment the debris flow is sourced, just the probability that it will 
reach the mouth. Including the distributions of triggering and non- 
triggering rainfall events in a Bayesian methodology allows the devel
opment of failure probabilities that better reflect uncertainties inherent 
in shallow landslide systems (Berti et al., 2012). Recently, the use of 
machine learning has provided a new tool for developing these statis
tical methods that is versatile, improves through time as more data is 
added, and may have some promise as a predictive tool (Huang et al., 
2020; Liu et al., 2021; Smith et al., 2021). 

Spatially-distributed models of landslide triggering are an important 

process-based tool for estimating landslide susceptibility. These models 
are typically digital topography-based estimates of landslide suscepti
bility, with a factor of safety calculated for each individual pixel. These 
models include a topography-based hydrological model that varies in its 
form. Such models include SHALSTAB (Dietrich and Montgomery, 
1998), dSLAM (Wu and Sidle, 1995), TRIGRS (Baum et al., 2008), 
SINMAP (Pack et al., 2001), HIRESS (Rossi et al., 2013; Salvatici et al., 
2018) as well as many others (e.g. Chang and Chiang, 2009). However, 
the ability of physically-based models for shallow landslide hazard 
analysis has been questioned (Zieher et al., 2017) but the approach is 
considered feasible for computing a regional overview of slope stability 
and may oversimplify at the local scale, where slope-based geotechnical 
modelling may prove more fruitful. Increasingly the quality of the hy
drological and geomorphic modelling underpinning these models has 
improved considerably (Anagnostopoulos et al., 2015; Lehmann and Or, 
2012; Tang et al., 2019; Thomas et al., 2021; von Ruette et al., 2013). 

Process-based shallow landslide hazard models are less common. 
While slope scale landslide hazard analysis is a common geotechnical 
method that is applied to numerous slopes globally (a summary of these 
methods is outside the scope of this article), there are few examples of 
the application of slope-scale analysis to the shallow landslide problem. 
In particular, simplified slope-scale analysis of shallow landsliding has 
been applied effectively as a tool for disaster relief and mitigation 
particularly to support the risk assessment of infrastructure (CHASM; 
Thiebes et al., 2014). The applications of these models can be made 
increasingly flexible through the use of search algorithms to determine 
the most likely failure planes which makes them important tools for 
decision support at the slope scale (Bozzolan et al., 2020). 

4. Vegetation for managing catchments 

Vegetation, particularly trees and forests, is widely used as a catch
ment management tool. It can: regulate water quality and quantity; the 
amount of carbon sequestration; provide an alternative income source 
for poor/marginal agricultural land; assist with managing biodiversity 
and other ecological goals; and can change catchment sediment yields 
based on the characteristics and extent of forest cover (Phillips and 
Marden, 2005; Hicks et al., 2000; Marden et al., 2014). 

In many catchments, a wide range of topographic conditions and 
land uses occur, and tools are required by land or catchment managers to 
target mitigation of soil erosion, including that caused by shallow 
landslides, to reduce sediment loads in rivers to meet regulatory stan
dards (Dymond et al., 2010; Dymond et al., 2016; Betts et al., 2017; EU 
water framework directive, 2000; Bathurst et al., 2005; Elliott and 
Basher, 2011). Given that forests are a multi-functional tool for catch
ment management, the lack of clarity on the trade-offs associated with 
the management of forest catchments for different purposes (Beland 
Lindahl et al., 2013) has as yet poorly understood consequences for 
mitigating landslides and other hazards. 

Management of landscape susceptibility to rainfall triggered land
slides with vegetation is typically applied at two broad geographic 
scales: 1) individual slopes within a sub-catchment, and 2) upland 
landscapes ranging in size from sub-catchments to entire river basins 
(Forbes and Broadhead, 2013; Bathurst et al., 2010). At the individual 
slope level, the focus of most investigations to date has been on either 
small-scale hydro-mechanical contribution of vegetation to stabilising 
the regolith or assessing failures once they occur to determine details of 
triggering mechanism. At the landscape level, forest related options 
include retention, rehabilitation or restoration of forests. However, at 
the catchment scale, the issues are more complex particularly in relation 
to the interaction between hillslope stability and channel stability (e.g. 
Benda, 1990; Benda and Dunne, 1997a). For example, determining 
where in a catchment and how much forest or many trees are needed to 
reduce future landslide occurrence and thus reduce catchment sediment 
loads is a problem that has largely not been addressed other than via 
modelling (e.g. Bathurst et al., 2010; Bovolo and Bathurst, 2012). 
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Because landslides do not normally occur uniformly across a catchment, 
it has been suggested that careful targeting of forests and trees could 
produce a disproportionately large reduction in landslide occurrence 
and sediment yield (e.g. Reid and Page, 2002). In countries such as New 
Zealand where the susceptibility to shallow landslides is high in many 
places, the management response has been to blanket afforest or reforest 
whole catchments (e.g. Phillips and Marden, 2005; Phillips et al., 2013) 
rather than consider and target the specific parts of catchments that need 
treating. The exception has been where retention of pastoral agriculture 
in landslide susceptible areas has required space-planted trees to reduce 
future landslide occurrence (McIvor et al., 2011; Schwarz et al., 2016), 
though the scale of planting and lack of targeting to the most susceptible 
areas is inadequate to significantly reduce landslide erosion (Spie
kermann et al., 2021). 

Our ability to apply simple models across the landscape for practical 
management purposes at a range of scales is limited, especially in terms 
of defining/predicting where vegetation could have the most beneficial 
effect, i.e. targeting to reduce landslide hazard (González-Ollauri and 
Mickovski, 2017). Many tools are based on simplified models that do not 
satisfactorily represent the main underlying mechanical and hydrolog
ical processes involved in the reinforcement of slope stability by vege
tation, despite progress in this area (e.g. Tordesillas et al., 2018). For 
example, most models cannot describe the three dimensional (3D) 
spatial heterogeneity of vegetation. Nor can these models describe 
realistic slope geometry as they are two dimensional (2D) (Stokes et al., 
2014). And lastly, although several commercial and freely available 
tools for calculating slope stability exist (e.g. SLOPE/W, PLAXIS, 
SHALSTAB, TRIGRS) they are generally not able to accurately predict 
the likelihood of a landslide within a given landscape. Hence, achieving 
an appropriate scale of modelling for the practitioner remains a balance 
between parameter heavy spatially-distributed models and simple, but 
poorly constrained modelling. A focus on simple field-based measures, 
such as regolith depth mapping (e.g. Parker et al., 2016), may provide 
important constraints at the management scale. 

Catchment-scale modelling tools that link shallow landslide initia
tion to sediment yield and sediment within rivers are becoming 
increasingly important for catchment managers who are often respon
sible for reducing sediment loads in rivers to meet water quality targets 
and/or reduce the impacts of natural hazards on downstream commu
nities and infrastructure, and on natural habitat including in-stream 
habitat. Such models aim to represent and include the contribution 
from all erosion processes and operate at scales useful to management 
(e.g. Wilkinson et al., 2005, Wilkinson, 2008; Betts et al., 2017). They 
aim to provide long-term (decadal or longer) average sediment contri
bution from shallow landslides (and other processes) as well as under
standing the implications of catchment management on sediment yields 
(e.g. Dymond et al., 2016). 

Burton and Bathurst (1998) developed one of the earliest approaches 
to assess the contribution of shallow landslide erosion to catchment 
sediment yield using the model SHETRAN (Ewen, 1995). The approach 
determines when and where landslides occur in a catchment in response 
to time-varying rainfall and snowmelt, the volume of material eroded, 
and the impact on catchment sediment yield. Using SHETRAN, Bovolo 
and Bathurst (2012) modelled the contribution of rainfall-triggered 
shallow landslides to catchment sediment yield as a function of rain
fall return periods. The SHETRAN model has also been used to assess the 
impacts of major landsliding events on basin scale erosion and sediment 
yield in Spain (Bathurst et al., 2006) and in Italy (Bathurst et al., 2005). 
Bathurst et al. (2010) explored the potential for reducing the occurrence 
of shallow landslides through targeted reforestation of critical parts of a 
river basin using the SHETRAN model and demonstrated that increasing 
root cohesion from 300 to 1500 Pa caused a two-thirds reduction in the 
number of landslides and suggested such approaches provide useful 
information even on the basis of imperfect data availability but 
cautioned that model output should be interpreted carefully in the light 
of parameter uncertainty. 

Recent advances using LiDAR and remote sensing have improved the 
spatial resolution at which landslide susceptibility can now be deter
mined and this coupled with high resolution event information from rain 
radar offers potential to resolving where to target trees within a catch
ment to achieve the range of outcomes land managers are seeking (e.g. 
Jacobs et al., 2020; Vandromme et al., 2020). An increasing number of 
geospatial technologies (e.g. Synthetic Aperture Radar (SAR) (Burrows 
et al., 2019); optical satellite imagery (Heleno et al., 2016; Bunn et al., 
2019; Hölbling et al., 2016) have been applied to map landslides and 
produce inventories that are needed to develop susceptibility models 
and for testing/validating prediction models. New satellites and sensor 
types have increased the spatial (<0.5 m GSD: e.g. Worldview series, 
GeoEye-1, Pleiades-1a, etc.) and temporal (2–30 m GSD: e.g. Planet
Scope, RapidEye, Sentinel-2, Landsat series, etc.) resolution of available 
imagery at coarser spatial resolutions. High-resolution data is necessary 
when considering the size of an individual landslide relative to an in
dividual pixel in places such as New Zealand (Smith et al., 2021). 
Additionally, satellite-based precipitation data and local radar is 
becoming increasingly more precise for developing hydrologic param
eters (e.g. Pan et al., 2010). 

Resolving how many trees at what density and their placement in a 
catchment, together with determining when they become effective for 
limiting rainfall-triggered shallow landslides, will we suspect, remain a 
challenge for some time. Advances in modelling the triggering of 
shallow landsliding under differing vegetations types described above 
have yet to be readily translated or applied at the catchment scale in 
management tools. Broadly, there is a lack of detailed information across 
a wide range of conditions (regolith depth and texture, slope, climate, 
etc.) and on triggering thresholds for landslides required to underpin 
hazard assessment and to enable forecasting or scenario modelling at 
larger catchment scales, though the latter has received some attention 
(Guzzetti et al., 2007; Segoni et al., 2018). Consequently, many land
slide events are treated as broad random occurrences (i.e., a purely 
stochastic phenomenon (e.g. Vargas-Cuervo et al., 2019) rather than 
something that can be managed in any targeted way. 

4.1. Management of forest cover and space planted trees 

Managing catchment forest cover is seen as a major nature-based 
solution for the reduction of landslide hazards. Hence accurately un
derstanding and describing patterns in landslide occurrence across 
landscapes and how this is mediated by vegetation is essential for 
improving our predictive ability for management across a range of 
scales. There are several articles that summarise and review the effects 
of woody vegetation and forests on slope stability and how forests and 
trees are used to provide erosion control (e.g. Greenway, 1987; Sidle and 
Ochiai, 2006; Norris et al., 2008; Stokes et al., 2014; Phillips et al., 
2017). There is also a sizeable literature on the effects of different forest 
management practices, particularly forest removal, on landslide initia
tion (e.g. Dhakal and Sidle, 2003; Montgomery et al., 2000; Imaizumi 
et al., 2008; Imaizumi and Sidle, 2012; Preti, 2012; Goetz et al., 2015). 
Assessments of such effects have been included in landslide inventories 
and/or are analysed using physically-based slope stability models at the 
catchment scale. 

The observation of larger shallow landslide events coinciding with 
forest removal highlights the role of root reinforcement in limiting 
landsliding rates. These events generally correspond to minima in 
rooting strength following initial root decay and prior to the regenera
tion or replanting of trees. This has been referred by several authors as 
the “window of vulnerability” (Sidle and Ochiai, 2006; Phillips et al., 
2017). This window of approximately 3 to 20 years after forest clearing 
coincides with an increase in landslide rate of about 2 to 10-fold 
compared to undisturbed forests (Sidle and Bogaard, 2016). While 
there is strong interest in ways to minimize the increased landslide 
occurrence particularly following forest removal, the re-introduction or 
maintenance of forest cover is also seen as a possible solution (Lu et al., 
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2001; Vanacker et al., 2007). For small catchments (up to a few square 
kilometres), it makes sense to reforest entire basins to reduce shallow 
landslides and limit other erosion processes, however it may be unrea
sonable to expect this for large catchments (100s to 1000s of km2) where 
people rely on the land for other purposes such as farming. The practice 
of reforesting entire catchments, even relatively large ones, has been a 
primary mechanism for treating highly erodible land in New Zealand's 
East Coast (Phillips and Marden, 2005; Marden, 2012; Phillips et al., 
2013). 

In New Zealand, space-planted trees are also used in silvopastoral 
systems to provide a degree of protection from rainfall-triggered shallow 
landslides on pastoral hillcountry (e.g. McIvor et al., 2011; Douglas 
et al., 2011; Spiekermann et al., 2021). Poplars (Populus spp.) and wil
lows (Salix spp.) are the main species used and they are typically planted 
between 20 and 200 trees ha− 1. Their use is balanced between providing 
enough benefits (reducing extreme temperatures and evapotranspira
tion, improve regolith properties, reduce erosion) and reducing pasture 
productivity through competition for soil resources (nutrients and 
water) (Benavides et al., 2009). There is little information on the effects 
of space-planted trees on reducing shallow landslides at the catchment 
scale, i.e., for catchment sediment budgets and landslide hazard 
reduction. However, space-planted trees are used as part of silvo- 
pastoral land use systems and as a soil conservation measure in many 
countries to reduce erosion (Wilkinson, 1999; McIvor et al., 2008, 
2011). For example, empirical measurement at slope scales and 
modelling using detailed root distribution datasets from root-system 
excavations, suggest that the triggering of shallow landslides on hill 
country in New Zealand is prevented when 20–30 cm DBH poplar trees 
are spaced around 13–15 m (Douglas et al., 2011; Schwarz et al., 2016). 

In terms of the strategic placement of forests, woodlands, or widely 
spaced trees to reduce the incidence of landslides, the literature is 
particularly scant of tools (models, DSS, guidelines) aimed at catchment- 
scale targeting. While advances in modelling offer a potential solution, 
they are often limited by availability of parameter data or are designed 
to work only at limited scales (e.g. Temgoua et al., 2016, 2017). 
Resolving the question of how many trees are needed, where to place 
them and their spacing, and determining when they become effective in 
terms of limiting the incidence of shallow landslides remains a challenge 
for catchment managers (Stokes et al., 2014). Additionally, the intro
duction of the concept of nature-based solutions for ecological disaster 
risk management (Renaud et al., 2016) and changes to land manage
ment strategies, such as through rewilding and abandonment (Moreno- 
de-las-Heras et al., 2019) suggest that there are multiple management 
pathways to stabilising catchment hillslopes. However, as indicated 
above, modelling is likely to provide a pathway, particularly as tech
nology allows improved access to data. 

To reduce sediment load in rivers (i.e., improve catchment man
agement), the overall ability to predict the impact of landslide events 
and consequently the development of effective mitigation measures such 
as targeted tree planting, is limited not only by knowing where the most 
susceptible areas are but also by the ability to characterise and then 
predict the travel path, storm centre, and intensity range within the cell 
structure of extreme weather systems (Crozier, 2017). Technological 
advances in radar and improvements in forecasting and storm tracking 
may help in the future (Brunetti et al., 2018). A further issue in under
standing landslide risk in many places has been the lack of standardised 
data from inventories of past landslide events including their triggering 
rainfalls resulting in a poor understanding of the frequency and 
magnitude of landslides and their impacts (Glade and Crozier, 1996). 
This is now being addressed by improvements in technology and 
availability of semi-automated collection of data from post-storm sat
ellite imagery at appropriate scales (e.g. Bellugi et al., 2015; Bunn et al., 
2019; Smith et al., 2021) and availability of rain radar data to charac
terise rainfall patterns (e.g. Chiang and Chang, 2009; Nyman et al., 
2015; Destro et al., 2017). 

5. Challenges for future research 

Catchment management of shallow landslides and the role of vege
tation in that management remains a significant future challenge. 
Within this context, organisations and governments have largely 
embraced nature-based solutions as a low-cost approach to manage 
hazardous catchments (e.g. UNDRR, 2020). Here we have outlined the 
current state of science for managing catchments with vegetation, yet 
there are several outstanding challenges for researchers if they are to 
meet the current and future needs of catchment managers. Many are not 
just confined to understanding the role of vegetation on rainfall- 
triggered shallow landslides. These are not limited to but include: 

• Improving the spatial and temporal frequency of landslide in
ventories, including producing ‘multi-event’ inventories when event 
landslide densities are high. Landslide inventories remain our most 
useful tool for estimating and modelling landslide susceptibility and 
hazard. Shallow landslide events are relatively rare and often occur 
in remote locations, hence development of better and more frequent 
landslide inventories, particularly ones that are openly available will 
improve our ability to understand controls on landslide triggering. 
The New Zealand setting is well suited to this approach (Smith et al., 
2021),  

• Understanding the influence of different management approaches, 
forest types, and tree spacing on landslide susceptibility (Moos et al., 
2016). Increasingly new and different approaches to the manage
ment of catchments have been proposed, including land abandon
ment and rewilding, alongside traditional forestry approaches. Each 
approach will change landslide frequency and magnitude in a 
different way through time.  

• Building models and approaches that can bridge issues of scale in 
modelling, particularly in data-poor environments (Peeters et al., 
2008). The issues of aleatoric and epistemic uncertainty in our cur
rent modelling approaches remain a significant limitation to 
bridging between detailed process modelling approaches and the 
simplified statistical modelling approaches commonly used in man
agement. This includes developing ways to include the 3D spatial 
distribution of root and regolith properties in models with appro
priate computation times (Temgoua et al., 2016) and development of 
realistic root growth models that provide spatial patterns of root 
distribution or density over time (Tobin et al., 2007; Danjon et al., 
2008; Saint Cast et al., 2019),  

• Improving understanding of how shallow landslides contribute to 
river sediment loads. These challenges have been referred to in terms 
of scale (i.e. how much) and connectivity (i.e. by what pathway) 
(Sidle et al., 2017). Better understanding of the stochasticity of both 
the landsliding and fluvial processes are important to tackling this 
challenge.  

• Resolving at what scales and situations (e.g. storm rainfalls) does the 
“forest effect” on reducing landslide incidence disappear i.e., a 
magnitude-frequency-scale question. This problem reflects the inte
gration of historical land management and long-term geomorphic 
processes, in particular estimating the spatio-temporal patterns of 
root strength, pore pressure, regolith depth and hydraulic properties 
across the landscape (e.g. Cislaghi et al., 2017; Schmaltz and Mergili, 
2018; Hales, 2018; Giadrossich et al., 2020; Masi et al., 2021). These 
represent the key epistemic uncertainties driven by vegetation and 
require better understanding how much field data (and generating 
them) are needed to calibrate and validate existing and future 
models across a range of realistic management situations, and  

• Identifying and meeting the concerns of practitioners/land managers 
via co-production of guidelines, models, and management tools 
(Stokes et al., 2014). 
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6. Concluding remarks 

In this paper we outlined the role of vegetation for managing shallow 
landslide occurrence, with a focus on how vegetation is used at the 
catchment scale and presented a summary of the approaches used to 
address this issue. While there have been significant improvements, 
particularly in the development of models and tools to help catchment 
managers manage both the incidence of rainfall triggered shallow 
landslides and their impacts on catchment sediment yields, there are still 
major challenges ahead. Developing appropriate tools to aid specific 
catchment targeting of vegetation to “treat” the most susceptible parts of 
the landscape to rainfall-triggered landslides is a pressing need for 
catchment and land managers. A further need is the availability of field 
data at the range of scales that are required for parameterising many of 
the models currently available, particularly at the landscape to regional 
scales. In part, this limits usefulness of many models for practitioners 
who are required to manage such catchment hazards or improve 
catchment water quality to meet regulatory targets. 

Thus, in many applied situations, the benefit of modelling greater 
process complexity is offset by the punitive costs of data collection and 
by the uncertainty attached to the associated data, often resulting in the 
application of simple models driven primarily by slope and basic rego
lith or rock properties or by average values of root cohesion. However, 
some types of data collection are becoming increasingly affordable (e.g. 
remote sensing (including LiDAR) and can provide cost-effective data 
collection for landslide inventories and for generating DEMs from which 
slope information can be obtained), but others remain difficult and 
expensive particularly where manual methods must still be used (e.g. 
obtaining tree root distribution and regolith physical properties). 

As advances in remote sensing and other sensing technologies 
improve, there is hope that the paucity of field data needed to improve 
the development, accuracy and utility of models will cease to be a 
limiting issue and that practitioners and catchment managers will 
eventually have simple and robust tools to enable them to manage for, 
and respond to, rainfall-triggered landslide events. Lastly, they need to 
be confident that when they target vegetation within catchments to 
reduce the impacts of such events it will be successful. 
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García-Ruiz, J.M., Beguería, S., Arnáez, J., Sanjuán, Y., Lana-Renault, N., Gómez- 
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