

Wetlands: recent research and current initiatives

Bev Clarkson Manaaki Whenua – Landcare Research, Hamilton

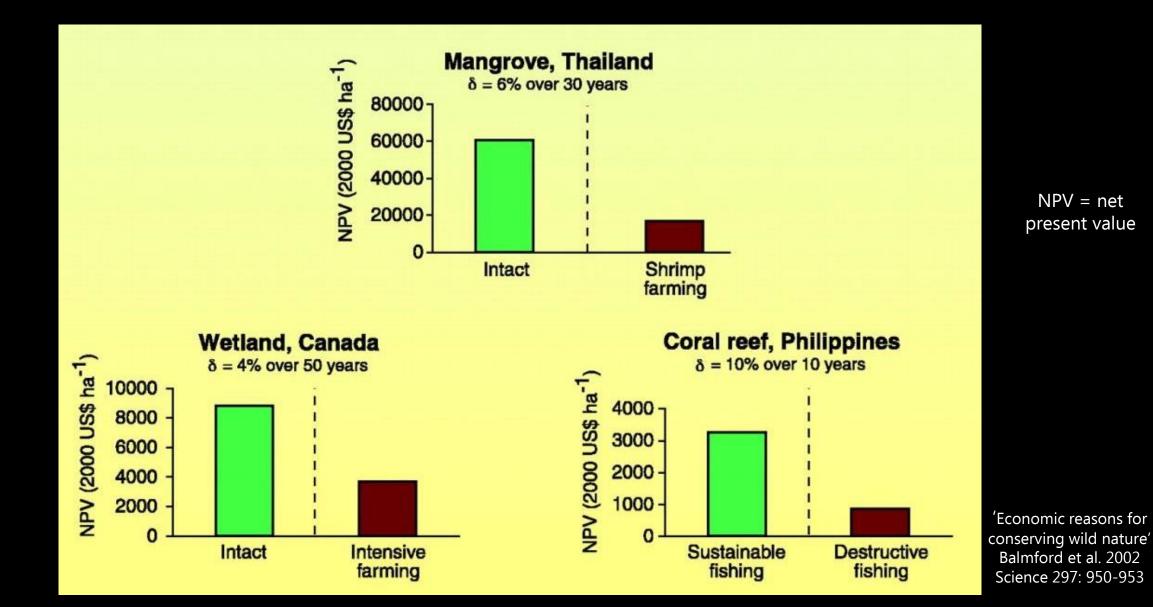
Outline

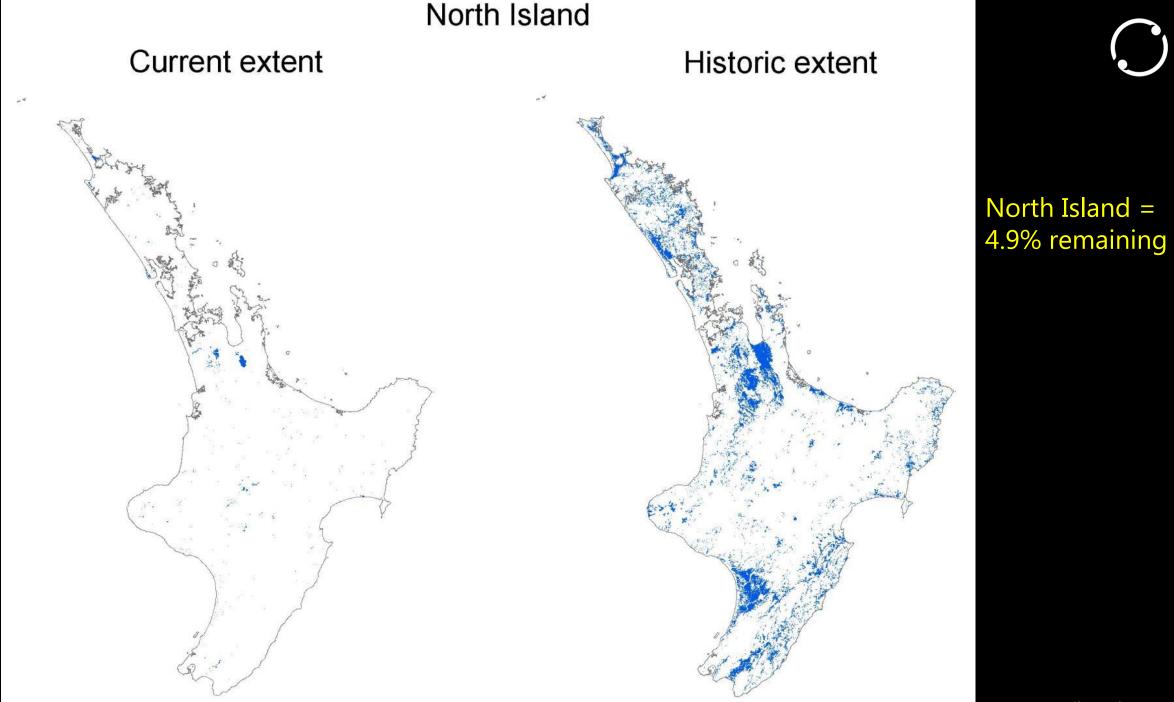
- A Background
- B Wetland programme research
- C New tools
- D Implications for policy

A Background

$$\bigcirc$$

Wetland definition: Permanently or intermittently wet areas, shallow water, and land water margins that support a natural ecosystem of plants and animals that are adapted to wet conditions (RMA 1991)




Kepler Mire Te Anau

Importance of wetlands

- Provide large environmental, economic, social & cultural benefits
 - Regulate water quality/ quantity, global nutrient/ C budgets, provide food
- Wetlands one of the most valuable ecosystems in world
 - NZ wetland ecosystem services estimated at \$34 184 ha⁻¹ yr⁻¹ (Cole & Patterson 1997)
- NZ wetlands have been severely reduced since European settlement – 90% loss (Ausseil et al. 2008)
- NZ wetlands continue to degrade
 - drainage, nutrients, weeds, pests

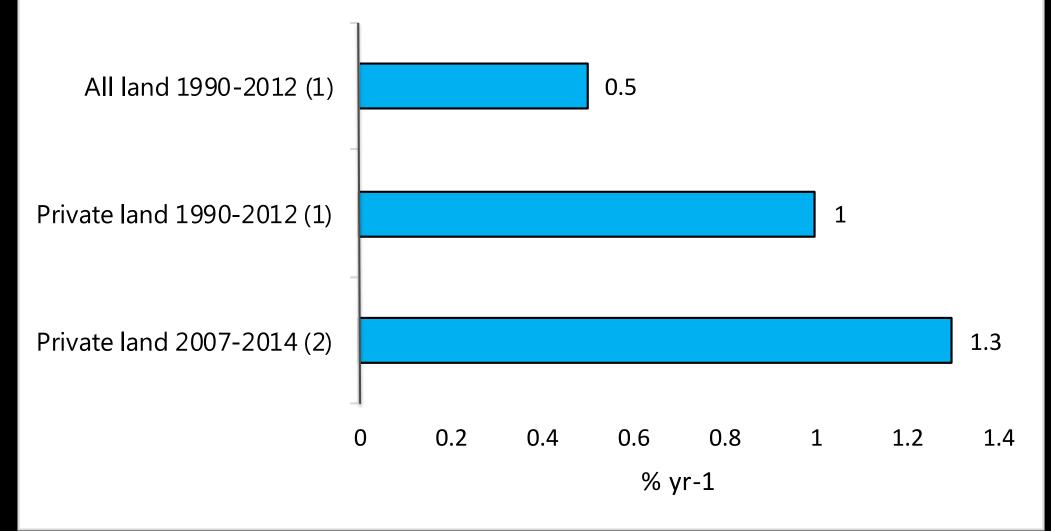
\$ Value of retaining vs converting natural habitats

Ausseil et al. 2008

Ausseil et al. 2008

Threatened ecosystems

- Wetlands contain disproportionate no. of NZ's threatened species
- Wetlands cover <1% of NZs land area yet contain
 - 12% of all threatened invertebrates
 - 16% of nationally critical bird species (Hitchmough et al. 2007)
 - 23% vascular plants class'd threatened/uncommon (de Lange et al. 2009)



'Fred the thread'

Policy to protect wetlands

- Resource Management Act (RMA 1991 Sections 6a, 6c)
 - protection & management of wetlands as matters of national importance
- Government National Priorities for protecting indigenous biodiversity on private land 2007 (MfE, DOC)
- NPS-Freshwater Management 2014
 - Key requirement: protect the significant values of wetlands
- NPS-Indigenous Biodiversity under development
 - Aiming to strengthen protection of wetland biodiversity

Southland: rate of wetland loss post-RMA

(1) Robertson et al. 2019; (2) Ewans 2016

B Wetland Research Programme

- Wetland function & restoration (MWLR, NIWA, UOW, DOC, Waikato Tainui)
- The key to restoration is understanding wetland function
- Wetland types are classified according to water supply and nutrients (Johnson & Gerbeaux 2004)

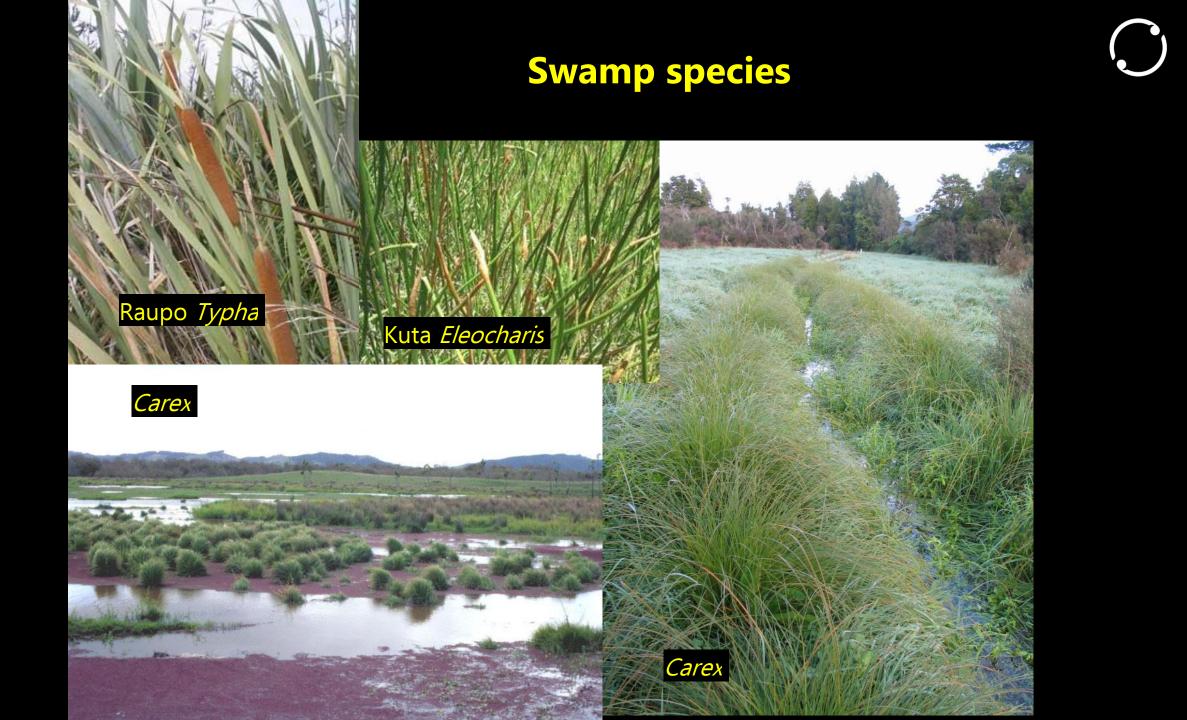
Classification of freshwater wetlands

Wetland type

Water source	Rainfall	>	Groundwater		Surface water
Water fluctuation	Low		Medium	>	High
Nutrients	Low		Medium		High
рН	Low/acidic		Medium		Neutral/high



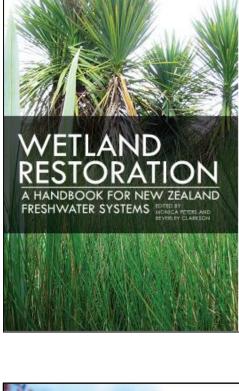
Swamp



Sedge *Machaerina*

Recent Wetland Programme Products

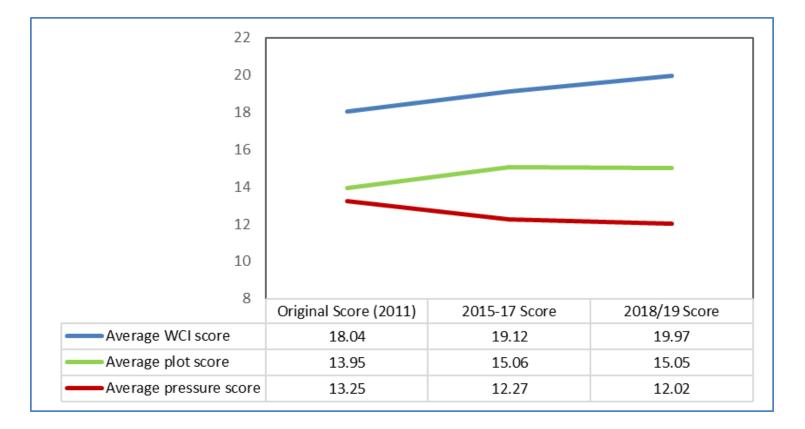
Research papers, chapters, reports


- Function: litter decomposition, nutrient limitation, C dynamics, resilience to drainage
- Restoration: willow control, native vegetation, invertebrates, cut-over bog, hydrology

Handbooks/tools

- Wetland restoration handbook: 2010, reprinted 2012 (Peters & Clarkson 2012)
- Te Reo o te Repo (The voice of the wetland) cultural handbook 2017 (Taura et al. 2017)
- Wetland monitoring tool: WCI (Wetland Condition Index) 2004 (Clarkson et al. 2004)
- Revised condition monitoring handbook 2014 (Clarkson et al. 2014, Clarkson & Bartlam 2017)
- Management/policy: interim limits to maintain ecological integrity 2015 (Clarkson et al. 2015)
- Delineation tools: Vegetation (Clarkson 2014), Hydric soils (Fraser et al 2018), Protocols (Clarkson 2018)

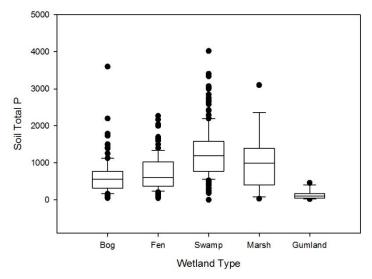
MWLR Website: Google: 'Restoring wetland ecosystem function'



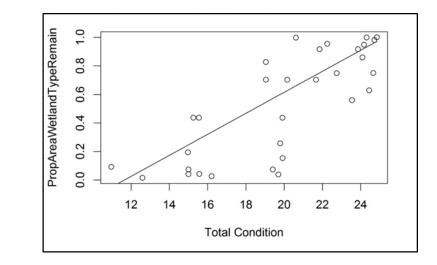
Wetland condition monitoring NRC 2011-2018

Improvements due to:

Initial fencing (env funding) Improved plant cover Improved native vs exotic veg Improved awareness Some animal pest control



n = 28 wetlands


Lisa Forester, Northland Regional Council

Limits to maintain Ecological Integrity

- Preliminary development of attributes for NOF under NPS-FM
- Soil TP, wetland % remaining correlated with Ecological Integrity
- Most practical option=no net loss & management/restoration

Box plots of soil Total P (%) in wetland types

Bogs: % area remaining & wetland condition

Clarkson, Overton, Ausseil, Robertson 2015

C New Tools - Wetland Delineation

How to tell our wetlands from our drylands

- **ISSUE:** RMA wetland definition difficult to apply on-the-ground
- Need tool(s) to determine whether a site is a wetland or not

RMA Wetland Definition: Permanently or intermittently wet areas, shallow water, and land water margins that support a natural ecosystem of plants and animals that are adapted to wet conditions.

NZ Wetland Delineation: Adapt USA system

- USA: 3 criteria vegetation, soils, hydrology (US Army Corps of Engineers 1987 & updates)
 - All 3 required for site to be a wetland
- NZ Vegetation Tool. Based on plant species fidelity to wetland. Completed 2014
- NZ Soil Tool. Hydric soils or reducing conditions present. Completed 2018.
- NZ Hydrology Tool: yet to do.....
- Overall protocols: Completed 2018 (minus full hydrology tool)

1. Vegetation Tool: Wetland Habitat Classes

- OBL: Obligate wetland. Rarely in uplands (drylands). Estimated probability >99% in wetlands
- FACW: Facultative Wetland. Usually in wetlands, occ. in uplands (67-99%)
- FAC: Facultative. Commonly occurs in wetlands and uplands (34-66%)
- FACU: Facultative Upland. Occasionally in wetlands but usually in uplands (1-33% in wetlands)
- UPL: Obligate Upland. Rarely in wetlands, almost always in uplands (<1%)

New Zealand wetland indicator status ratings

Clarkson BR, Champion PD, Rance BD, Johnson PN, Bodmin KA, Forester L, Gerbeaux P, Reeves PN 2013. Landcare Research, Hamilton, December 2013

FullName	Dation	Authority	Code*	Synonym(s)	Common name	BiostatusOrigin
	-		Code.	synonym(s)		
×Agropogon littoralis	FAC	(Sm.) C.E.Hubb.			Perennial beard grass	Exotic
Abrotanella caespitosa	FACW	Petrie ex Kirk	ABRcae			Endemic
Abrotanella linearis	FACW	Berggr.	ABRIIn	Abrotanella filiformis, A. linearis var. apiculata		Endemic
Acaena anserinifolia	FACU	(J.R.Forst. & G.Forst.) J.B.Armstr.	ACAans		Bidibid	Endemic
Acaena novae-zelandiae	FACU	Kirk	ACAnov			Non-endemic
Acer pseudoplatanus	UPL	L.	ACEpse		Sycamore	Exotic
Aciphylla aurea	UPL	W.R.B.Oliv.	AClaur		Golden spaniard	Endemic
Aciphylla pinnatifida	OBL	Petrie	ACIpin			Endemic
Aciphylla subflabellata	UPL	W.R.B.Oliv.	ACIsub			Endemic
Aciphylla traversii	FAC	(F.Muell.) Hook.f.	ACItry		Chatham Is speargrass, taramea	Endemic
Actinotus novae-zelandiae	OBL	Petrie	ACTnov	Hemiphues suffocata var. novae-zelandiae		Endemic
Adenochilus gracilis	FAC	Hook.f.	ADEgra			Endemic
Ageratina adenophora	FAC	(Spreng.) R.M.King & H.Rob.	AGEade		Mexican devil	Exotic
Agrostis capillaris	FACU	L.	AGRcap	Agrostis tenuis	Browntop	Exotic
Agrostis muscosa	FAC	Kirk	AGRmus		Ancushion grass	Endemic
Agrostis stolonifera	FACW	L.	AGRsto		Creeping bent	Exotic
Ajuga reptans	FACU	L.	AJUrep		Bugle	Exotic
Alisma lanceolatum	OBL	With.	ALIIan		Water plantain	Exotic
Alisma plantago-aquatica	OBL	L.	ALIpla		Water plantain	Exotic
Allium triquetrum	FAC	L.	ALLtri		Onion weed	Exotic
Anus glutinosa	FACW	(L.) Gaertn.	ALNglu		Alder	Exotic
Alopecurus aequalis	FACW	Sobol.	ALOaeq		Orange foxtail	Exotic
Alopecurus geniculatus	FACW	L.	ALOgen		Marsh foxtail	Exotic
Alopecurus pratensis	FAC	L.	ALOpra		Meadow foxtail	Exotic
Alternanthera denticulata	FACW	R.Br.	ALTses	Alternanthera sessilis	Nahui	Exotic

http://www.landcareresearch.co.nz/__data/assets/pdf_file/0014/64400/wetland_rating_species_December_2013.pdf

Currently 1066 native and exotic species with wetland indicator status rating

Rotopiko/Lake Serpentine wetland vegetation

Dominance Test >50% of dominant
species are OBL, FACW or FAC
Prevalence Index < or = 3</pre>

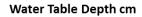
Wetland threshold (both DT and PI required if using only Vegetation Tool)

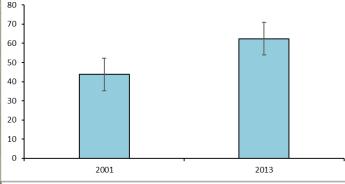
Plot	Dominance Test %	Wetland vegetation?	Prevalence Index	Wetland vegetation?
1	100	Yes	1.99	Yes
2	100	Yes	2.44	Yes
3	75	Yes	2.70	Yes
4	50	No	3.61	No
5	50	No	3.52	No

Vegetation Wetland Determination Data Form Plot 1 Lake Serpentine

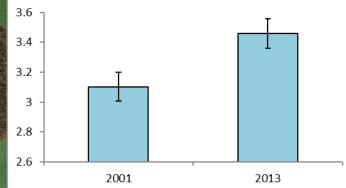
Lake Securities		والمأول	10 Samping Date: 17/9/2
	Reg	ION: VUOLINE	
ApplicanuOwner: Department of Conserv			
investigator(s): PDC PNJ LE PG		Nearby Iown/	city: <u>Te Awamutu</u>
andform (hillslope, terrace, etc.): <u>645m (sh4/l</u>	i.ocal re (منه	lief (concave, o	convex, none): <u>Concave</u> Stope (%): <u>O</u>
Laitude:	Longitude:		Datum: WGS 84
Soli Map Unit Name:			
Are climatic / hydrologic conditions on the site typical for	this time of year? Yes	/_ No	(If no, explain in Remarks.)
Are Vegetation, Soll, or Hydrology	_ significantly disturbed	i? Are*	Normal Circumstances' present? Yes No
Are Vegetation, Soil, or Hydrology	naturally problematic	? (if ne	eded, explain any answers in Remarks.)
			ocations, transects, important features, etc
SUMMARY OF FINDINGS - Attach site ma	ap snowing samp	ing point i	cations, transects, important reatures, etc
Hydrophytic Vegetation Present? Yes V	No Is	the Sampled	Area
Hydric Soll Present? NA Yes	Ma	ithin a Wetlar	
Wetland Hydrology Present? NA Yes			
Remarks:			
			•
VEGETATION – Use scientific names of pl	lants		
VEGETATION - Ose sciencito names of p	Absolute Domin	ant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	% Cover Specie		Number of Deminant Species
1			That Are OBL, FACW, or FAC:
2			Total Number of Dominant
3			Species Across All Strata: (8)
4			Percent of Dominant Species
	= Total	Cover	That Are OBL, FACW, or FAC:(A/8)
Septing/Shoub Stratum (Plot size: 0 m. x10 m.) 1. LEP 500	80 Y	FAC	Prevalence Index worksheet:
2 COP ten	0,1	FACH	Total % Cover of: Multiply by:
3 RUB Fru*	0,1	FACU	OBL species 85 x1= 85
A			FACW species 15.3 x 2 = 30.6
5			FAC species 82 x3= 246
o	80,2 = Total	Cover	FACU species 0.2 x 4 = 0.8
Herb Stratum (Plot size: 2 x x 2 m)			UPL species x 6 =
1SPH cri	<u>80 y</u>	OGL	Column Totals: 182.5 (A) 362.4 (B)
2. MAC ter		FACW	1.00
3. MAC VILB	4	066	Prevalence Index = 8/A =
4. CAR dem	15	FACW	Hydrophytic Vegetation Indicators:
5. Hip rad *		FACU	✓ Dominance Test is >50% ✓ Prevalence Index is ≤3.0 ¹
6. BLE MIN		FACW	Morphological Adaptations ¹ (Provide supporting)
7. Hollan			data in Remarks or on a separate sheet)
			Problematic Hydrophytic Vegetation ¹ (Explain)
9		·. ····	
10			¹ Indicators of hydric soil and wetland hydrology must
12			be present, unless disturbed or problematic.
	102.3 = Total	Cover	Hydrophytic
1			Vegetation Present? Yes V No
			Present? Yes V No

WETLAND DETERMINATION DATA FORM - NEW ZEALAND


NZ data form adapted from US Army Corps of Engineers


Wetland vegetation determination

- Rapid Test: visual assessment not expanded in NZ Vegetation Tool 2014; included in Protocols 2018.
- Dominance Test (DT): plot % cover data dominant species
- Prevalence Index (PI): plot % cover data all species
- Standard vegetation tool on its own useful for 80–90% of wetlands
- Problematic situations
 - where DT and PI don't agree, vegetation cover sparse or absent, dominated by FAC species, or modified ie not 'normal circumstances'
 - In these cases use soils and hydrology, & historical information


Lake Maratoto peatland: use of Prevalence Index

Water table & vegetation changes 2001-2013

Prevalence Index

P5: E1802198 N5804439 오

Fire 1993

94 E1802277 N5804415

P3: E1802354 N5804386 P2: E1802428 N5804356

P1 E1802497 N5804314

2. A Hydric Soil Tool for Wetland Delineation

Hydric soil - definition

Soils that have formed under conditions of saturation, flooding or ponding that has caused anaerobic (low oxygen) conditions in at least the upper 30 cm of the soil (based on Federal Register, 1994)

Pedologists: Scott Fraser, Peter Singleton

AT WALL BY FREE

Understanding soil-landscape relationships

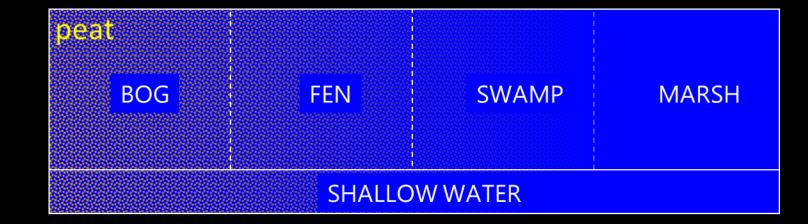
Munsell Soil Color Book

Determination is for top 30 cm of soil

Soil Wetland Determination Form: S9, Waikoha Station, Waikato Fraser et al. 2018

NZ soil form adapted from US Army Corps of Engineers

WETLAND DETERMINATION FORM - NEW ZEALAND: SOIL


site: Waikoha Station	Region: Waikato (Te Pahu)	Sampling Point/ID: 59
Owner/address: Waikoha Rd	Land management: Extensive - dwg stock	Date:30(5)(7 Slope (*):1-2
Landform: Steep hillcountry	Local relief: Very gentle slope	NZTM (E): 1784214
Soil drainage (circle) W MW I (P) VP	Land cover: Herbacrous freshwater vegeta	NZTM (N): 580 6087
Investigator: SF	Hydrologic features: Seep athend of guiling	Altitude (m): 23

Are climatic/hydrologic conditions on the site typical for this time of year? Yes <u>V</u> No_____ is the site drained? Yes <u>V</u> No_____ is the soil disturbed or problematic?_____ Are 'normal circumstances' present Yes <u>V</u> No_____ If needed, explain in Remarks

Depth	Matrix	Mottles			Material ⁴	ce of indicators, 30 cm default) Comments		
(cm)	Colour (moist)	Colour (moist)	%¹	Size ²	Location ³			
0-13	10 YR 4/2	7.5 YR 5 8	15	~1 mm	Root	Mineral		
13-25	IOYR 5/1	7.5 YR 518	5	<1mm	Pore, Red face	Mineral		
25-30	10 YR 6/2	7.54R 612	20	10-20 mm	Pore	Mineral	Water seepage	
-45							1.0	
lates of seco	abouto 2000 alex	10000					Typic Orthic Glay Go	
*Use % area Hydric soll i		classes; "Ped face,	pore,	within ped, al	ong roots, with	nin matrix; "Or	rganic (peaty), humic, mineral	
Organic lave	ers soil material (ger			ns oncretions anese concret	tions	Colours		
Peaty s	ubsoil		Nodu	ar				
r:h-i						Horizon		
Fibric Mesic			Blactio	and the		Reductimorphic		
Mesic Humic		1.0.00	V Plastic V Sticky			Redox mottled Redox segregations		
		-	Fluid			Perch-gley features		
Cause of we	etness					COLUMN TO A DE COLUMN		
Location		Water table		Pans			ivers	
Depress	ion	- 40 Depth to v			Pan (general)		Slow/ restricted permeability	
Flat		High grour			lumus-pan	Argillic layer		
Valley Gully		Perched w Seepage	ater ta		ronstone-pan Densipan	-	Depth to restrictive layer (c	
Guily Slope		Seepage Tidal)uripan	s.,	urface features	
on the					ragipan		Pugged some	
		Lithic cont	act		Drstein-pan	_	Ponding	
					Depth to pan (c	m)		
Sketch of sit	te/soil:							
		S-	7 pas		Junas	59		
			hus	14,12	S8 rushes		draw	
		X	un		XV	W T WW		
		0			8	NOM.	U U	
					<	Om	,	
					-			
Remarks:	the at surface	· las permen	bilibi	seils i.in	ler table	still cisme	in hole , Mudstone country	
Two of	her sample po	ints (\$7,58)	шр	and of S	9. Both a	ue non-l	ydric.	
Photo numb	ners:							
Photo numi								

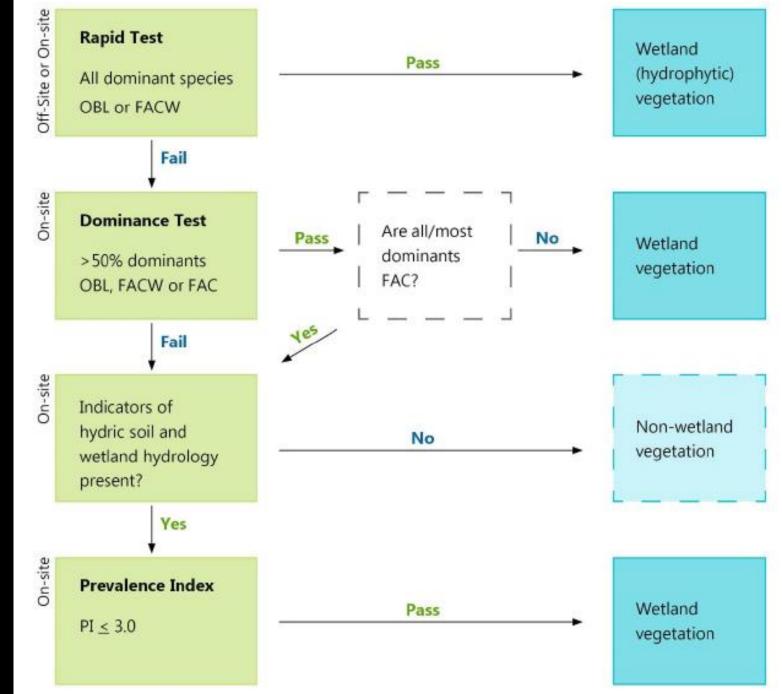
General soil clues for identifying wetland types

Wetland type

Soil Colour

Soil Tool Overview

- Most NZ soils are easy 80:20 rule
- Understand soil-landscape relationships and processes
- Colour is fundamental
- Some soils may require a pedologist


Peat Shrinkage

- <u>https://www.youtube.com/watch?v=Z0y1SCzJ3Q8&sns=em</u>
- This video from the Netherlands provides good information about how peat shrinkage occurs and the consequences.

3. Pulling it together: Wetland Delineation Protocol 2018

1 'Normal circumstances' present
 2 Stratify site into landscape units
 3 Map main vegetation types
 4 'Select' representative plots

Clarkson

2018

Pragmatic approach to delineation

- Ecologists with expert knowledge will map and delineate wetlands based on vegetation (Rapid Test) and where boundaries are clear, e.g. vegetation types, topographic boundary changes, flat vs slope
- Standard national approach useful in resolving disputes and where boundaries are problematic/unclear
- Hydrology tool would complete wetland delineation set (as in USA)
- Not covered by tool: significance, biodiversity values (exotic/native species treated equally)

D Implications/ recommendations for policy \bigcirc

- National accurate maps of wetlands/types to minimum area
- Lower area thresholds for regions with greater loss
- Map exotic as well as native-dominated wetlands
 - NPS-FM significant values of wetlands
 - NPS-IB probably focussed on indigenous communities
- Restoration potential based on historical/ recently modified wetlands important for depleted areas
 - Restored/certain mitigation wetlands on farms also contribute to wetland resource
- Simple indicators of wetland condition needed, e.g. fencing
- \$ recognition to landowners for protection, e.g. rewards for nutrient attenuation, C storage, biodiversity

Acknowledgements

- Scott Fraser, Scott Bartlam, Anne-Gaelle Ausseil, Jake Overton, Yvonne Taura, MWLR
- Lisa Forester, Katrina Hansen, NRC
- Hugh Robertson, Philippe Gerbeaux, Brian Rance, DOC
- Paul Champion, Kerry Bodmin, NIWA
- Peter Johnson, Paula Reeves
- Peter Singleton, Natural Knowledge Ltd
- Cheri van Schravendijk-Goodman, Swampfrog Environmental Ltd
- Charlie Newling, Jim Teaford, US Wetland Training Institute
- And many others