Digging Deeper:

Improved Soil Water Retention Information in S-map

Linda Lilburne & Sam Carrick

st 2020

Soil Water Retention?

- National Approach
- Farm-based Approach

Additional data

- Laboratory data: mix of new and legacy data sources
- QA
 Significant increase in amount of data

	Total number sites		S-map area	Total samples	
Soil Order	2014	2020	Mha	2014	2020
Allophanic	20	42	0.9	80	264
Allophanic Brown	15	21	0.1	60	134
Granular	2	4	0.1	8	33
Immature Gley	11	24	0.2	50	196
Immature Pallic	13	101	0.5	59	655
Mature Gley	52	103	0.5	242	709
Mature Pallic	29	72	1.1	147	595
Melanic	9	13	0.1	48	99
Non-allophanic Brown	56	139	2.2	236	726
Organic	0	5	0.1	0	41
Oxidic	6	8	0	29	58
Podzol	20	29	0.5	80	206
Pumice	9	18	1.1	40	108
Recent	52	85	1.2	229	634
Semi-arid	12	11	0.1	55	97
Ultic	7	9	0.1	36	86
Total	313	684	9.1	1399	4641

Representativeness of the measured data

MaturePallic

Recent

Plots showing the distribution of S-map horizon textures (black points and contours) with the distribution of texture in the training dataset (red contours)

Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information

S.J. McNeill*, L.R. Lilburne, S. Carrick, T.H. Webb, T. Cuthill

Landcare Research New Zealand, Box 69040, Lincoln 7640, New Zealand

ARTICLEINFO

ABSTRACT

Handling Editor: A.B. McBratney

Keywords: Pedotransfer functions Soil water response Hydraulic properties Empirical pedotransfer functions (PTFs) have been developed for estimates and the uncertainty of soil water content at different tensions, using explanatory variables from a soil information system for New Zealand (S-map). The explanatory variables include the soil order classification, texture, and parsed information from the S-map functional horizon description. Three models have been considered. The first uses a linear model based on the logit transformation to convert the bounded soil water response range to unbounded form. The second uses beta regression, which models the location and scale of the response separately. Finally, we consider a common response model that includes the tension as an explanatory variable to fit the soil water response at all tensions.

A feature of the PTFs is the consistent development of the uncertainty of estimates. All regressions are constrained within the range bounded by 0 and 100%, while the logit transformation and beta regression models are constrained so that response differences are bounded; this ensures that the response is monotonic with respect to tension. For the logit and beta regression methods, the constraint of range (0–100%), monotonicity, and order of uncertainty calculation are simultaneously maintained for all tensions, ensuring that derived estimates such as total available water (TAW), and macroporosity, and their uncertainty, are physically consistent.

The available data was split between a fitting and an independent validation dataset used for verification of the uncertainty model. Using the independent validation dataset, none of the models showed any evidence of over-fitting. The logit-transformation model was selected because it provided the lowest reliable estimate of mean absolute error and root mean square error in soil water response, TAW, and macroporosity, with uncertainty estimates based on posterior simulation. In the case of certain soil orders, a bias in the estimated TAW is evident at high values, although its origin is not clear. The selected model is used as the soil hydraulic response pedotransfer function used in the S-map inference engine to provide estimates of water content and available water for a wide range of New Zealand soils.

model

AW

AW.14

Measured

Smap horizon estimates & measurements

2014 model	2020 model
Logistic regression	Beta Regression (McNeill et al. 2018)
	Additional input parameter (depth)
	Change the default values for Organic
sites for development : 313	684 sites
sites for development . 515	3 713 complex
samples used to validate model: 280	928 samples
Very low sites and samples for some soil	All soil orders increased by 2 to 4 fold, but
orders	some still have low site and sample numbers
Stones have 0% water	Water content of stones based on recent
	research
Limited error info	Full error model
Less robust: 838 sibling horizons in S-map	More robust: 4 sibling horizons in S-map
cannot be predicted	cannot be predicted
424 siblings (10%) do not have Overseer soil moisture values (predictions were too	4 siblings do not have Overseer soil moisture values

PAGE 8

	AW60 2020	C	
NZSC Order	median	Smap area	
Order	change (mm)	(IVINA)	
Allophanic	-9.8	0.9	
Anthropic	6	<0.1	
Brown	-1.3	2.3	
Gley	-23.5	0.7	
Granular	8.4	0.1	
Melanic	-2.3	0.1	
Organic	1.9	0.1	
Pallic	1.6	1.6	
Podzol	-5.4	0.5	
Pumice	-23.2	1.1	
Raw	1.7	0.3	
Recent	-8.2	1.2	
Semiarid	8.7	0.1	
Ultic	6.4	0.1	
Overall	-4.5	9.1	

August 2020

SMap Water Retention Model 2020 AW 0-60cm change from August 2019 (mm)

SMap Water Retention Model 2020 AW 0-60cm change from August 2019 (mm)

Irricalc impact analysis

Overseer	Percentage change	N loss/ha count	N loss/ha %	GHG count	GHG %
Overseer impact analysis	> 50% increase	108	0.3%	-	0%
	> 40% increase	245	0.8%	-	0%
	> 30% increase	593	1.8%	-	0%
	> 20% increase	1,714	5.3%	-	0%
Nutrient budgets will not be auto- updated	> 10% increase	5,560	17.1%	-	0%
	0 to 10% increase	9,286	28.6%	16,780	56.7%
	no change	4,835	14.9%	1,782	6%
	0 to 10% decrease	9,007	27.8%	10,985	37.1%
	> 10% decrease	866	2.7%	7	0%
	> 20% decrease	149	0.5%	7	0%
	> 30% decrease	51	0.2%	7	0%
	> 40% decrease	25	0.1%	7	0%
	> 50% decrease	11	0.03%	7	0%

S-map Farm Test - vision

To develop a method by which a range of consultants, who may have limited soil expertise, can cost-effectively characterise a broad range of soil profile attributes at the farm or paddock scale, and which would support farm management decisions and planning.

S-map Farm Test – proof of concept study

Collection of rapid soil cores (**by consultants, technical staff**)

Rapid, cost efficient lab spectral scan by Vis Near or Mid Infra Red S-map calibration equations

Quantitative prediction

of a range attributes from scan e.g:

- Particle size
- Carbon
- Water holding capacity
- Soil order
- P-retention
- pH

Farm specific soil characterization for a range of uses e.g.

- Overseer
- FEP's
- Crop production
 models
- Irrigation mgmt
- Effluent mgmt

API direct data feed

- S-map is science driven (which means change from time to time)
- Better information for farm management & environmental outcomes
- MBIE prog has allowed us to double the reference data

New national model

- Significant improvement in the soil water retention model robustness
- National scale model -> all soil moisture data values will change

Proof of concept S-map Farm Test

- Real potential for applying S-map science at the farm scale
- Presented a proof of concept of how that might work hope to put together a partnership to progress this

Acknowledgements: MBIE, MPI, Regional Councils, FANZ, farmers