

How will climate change our landscape

Manaaki Whenua LINK seminar: 100

Kia matomato te tupu a Tāne, a Rongo, a Haumia-Tiketike

Let it be that the land and all its fruits may flourish

What we do is focussed around:

Four ambitions for New Zealand

OUR ENVIRONMENT

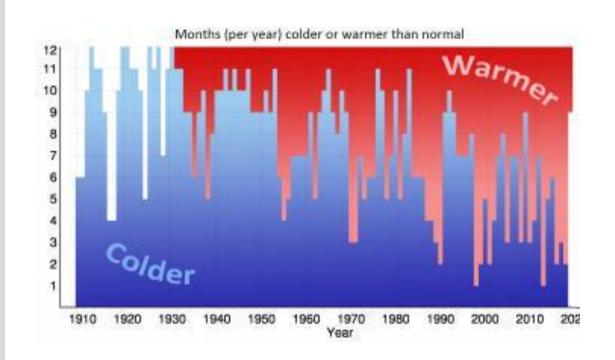
We are an environmentally informed nation, taking action together.

OUR BIODIVERSITY

We know, value and actively preserve our unique biota and ecosystems.

OUR BIOSECURITY

Our land is protected from invasive biological threats.


OUR LAND

We use our land, soil and water resources wisely.

March temperatures more evidence of a warming climate

- Officially, this March was the second equal hottest on record,
- According to NIWA's long-term temperature record, last month's temperature was 1.89°C above average.
- The first three months of this year have been the fourth warmest start to the year since records began in 1909.

Ross Ice Shelf melting 10x faster...

 "We've shown that the ocean is melting the north-western corner of the Ross Ice Shelf much faster than the rest of the shelf, and a lot of that melting is linked to summer heat from the top layer of the ocean,"

NIWA

Image: Science Media Centre

Environment Aotearoa 2019

- Theme 1: Our ecosystems and biodiversity
- Our native plants, animals, and ecosystems are under threat
- Theme 2: How we use our land
- Changes to the vegetation on our land are degrading the soil and water
- Urban growth is reducing versatile land and native biodiversity
- Theme 5: Our changing climate
- New Zealand has high greenhouse gas emissions per person
- Climate change is already affecting Aotearoa New Zealand

Why Manaaki Whenua

- Multi- and trans-disciplinary research
- Ecosystems approach
- Global perspective
- Climate change cuts across all areas of research, our ambitions
- Research excellence

Empirical measurement of the impact of climate change: correcting for measurement error in change: correcting for measurement error in the incidence of precipitation and understanding the incidence of precipitation and understanding the incidence of impacts, looks at how rainfall impacts agriculture and impacts, looks at how rainfall impacts agriculture land. Kendon Bell, Rutherford Foundation land. Kendon Bell, Rutherford Foundation land.

Manaaki Whenua Landcare Research

How will climate change our landscape:

- soils and carbon
- the economics of flooding
- resilience and adaptation

Paul Mudge Patrick Walsh/ Nick Cradock-Henry

Climate change and soil carbon: risks and opportunities

Paul Mudge Link seminar 100, May 2019

Outline

1. Why is **soil** carbon important in relation to climate change?

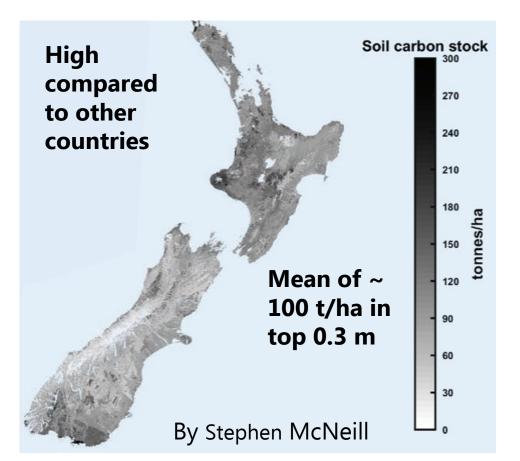
2. How much carbon is in NZ soils?

- 3. How are our soil carbon stocks changing?
 - Impact of land use, land management and climate
- 4. Summary

Why is soil carbon important?

1. Critical for soil health

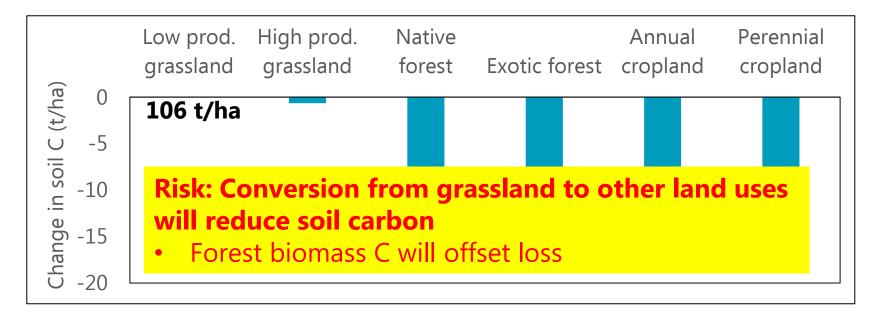
- Maintenance of soil structural stability
 - Affects root growth, air/water movement, runoff/erosion
- Food source for soil biota
- Nutrient cycling
- Soils with higher carbon are generally more resilient to perturbations
 - o e.g. **climatic** extremes; intense rainfall, drought


2. Feedbacks with climate via CO₂ release or sequestration

- Globally soils contain about twice as much carbon as the atmosphere
- Changes could have a big impact on atmospheric CO₂ concentrations.
 - Risk and opportunity

Totals

- About 2.5 Gt in top 0.3 m
- About 3.7 Gt in top 1 m
 = \$350B @ \$25 t CO₂


Forests have about 1.9 Gt carbon in biomass

How are our soil carbon stocks changing?

Current NZ soil carbon monitoring system:

- -National scale statistical model recently refined by Stephen McNeill
- -Predicts changes in soil carbon stocks with changes in land use

How are our soil carbon stocks changing?

Current NZ soil carbon monitoring system

- -National scale statistical model recently refined by Stephen McNeill
- -Predicts changes in soil carbon stocks with changes in land use

Limitations of the current system

- -Assumes equilibrium reached after 20 years for given land use
- -Does not account for long-term temporal changes or management effects within land uses
- -Currently no system to <u>directly</u> measure soil carbon changes in NZ's agricultural soils

- We recommended that a **minimum** of 377 sites be established to monitor changes through time <u>within</u> each of:
 - -Cropland (78)
 - -Horticulture (92)
 - -Dairy pasture (71)
 - -Flat-rolling drystock (76)
 - -Hill-country drystock (60)
- Designed to detect change of **2 t ha**⁻¹ within each target area at the **national** scale. Re-sample every 3-5 years.
- More sites required if finer resolution is wanted (e.g. detection of change <u>within</u> different regions, soils, crop types, or grazing intensities)

Soil carbon monitoring: Farm scale

- Many farmers are interested in, and beginning to measure soil carbon
 - No consistent method for in NZ...
- Current MPI funded project to design and document a <u>consistent</u> repeatable <u>system</u> to monitor soil carbon stocks at the farm scale

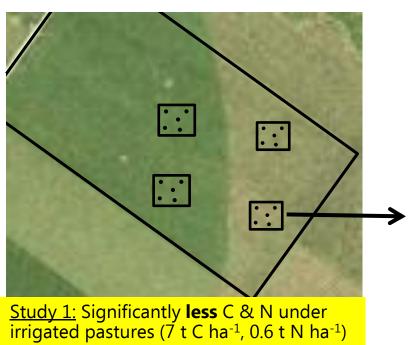
 Another aligned project to develop of an efficient <u>nested system</u> to monitor soil carbon stock changes across **multiple scales** (national – sector/region – farm)

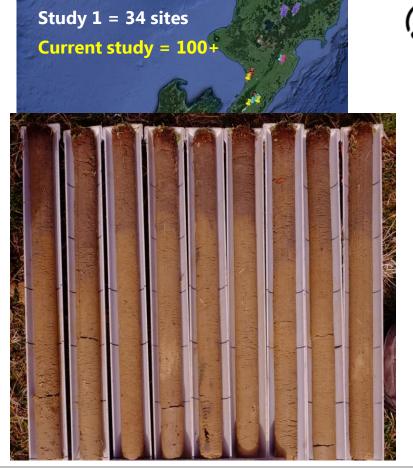
Specific studies on the impact of management on soil C

1. Sampling existing long-term field experiments

Long-term P fertiliser, irrigation and tillage trials

2. National/regional sampling on commercial farms: <u>paired site</u> approach

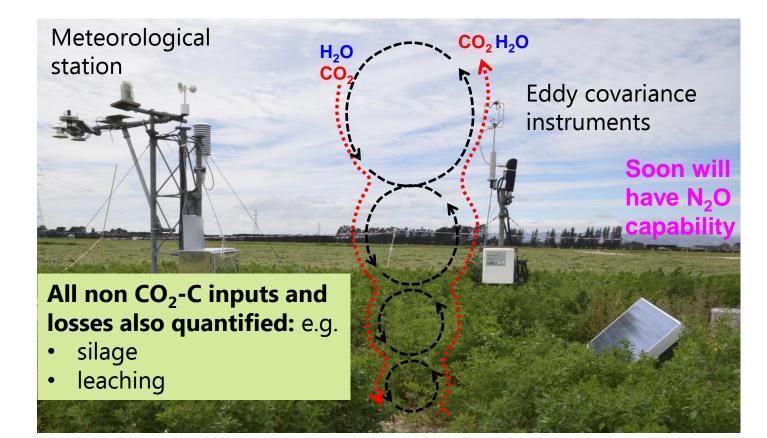

- Dairy vs sheep & beef pastures
- Maize cropping vs pasture
- 'Conventional' vs 'regenerative' pastoral systems (grazing mgmt.)
- Irrigated vs dryland pastures


3. New <u>experimental</u> manipulations aiming to increase soil C stocks

- Full inversion tillage for pasture renewal (Plant & Food Research)
- More diverse pastures (more resilient to CC + other benefits)
- Irrigation and deep rooting lucerne

Paired site approach:

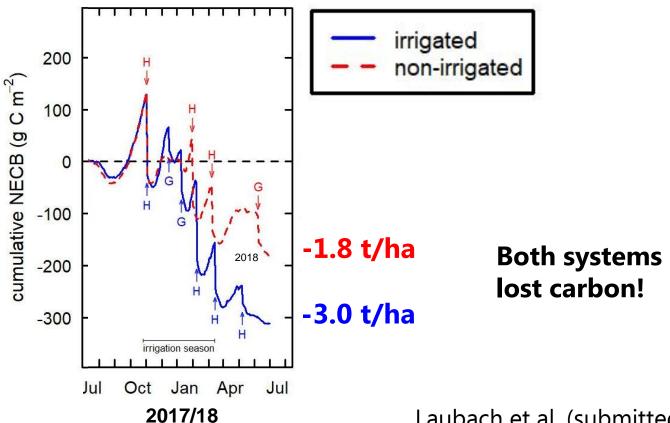
Impact of irrigation on soil C and N stocks



Mudge PL, Kelliher FM, Knight TL, O'Connell D, Fraser S, Schipper LA 2017. Irrigating grazed pasture decreases soil carbon and nitrogen stocks. Global Change Biology 23: 945-954.

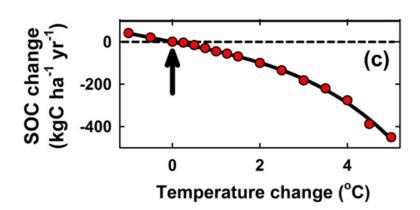
New experiments: Paddock scale carbon balances of irrigated and non-irrigated lucerne

Drainage, carbon and nutrient leaching



Lysimeters 1.5 m deep, 2 m diameter

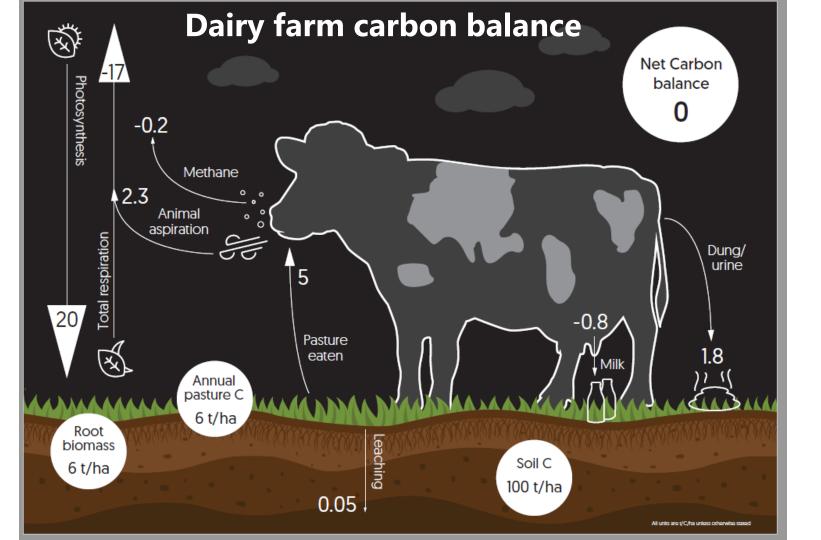
Cumulative carbon balance



Laubach et al. (submitted)

How will warming impact soil carbon?

 Modelling of a Waikato dairy pasture system indicates warming will reduce soil carbon stocks



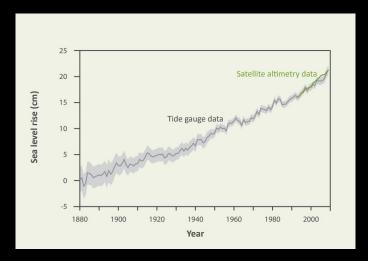
Kirschbaum, M.U.F.; Schipper, L.A.; Mudge, P.L.; Rutledge, S.; Puche, N.; Campbell, D.I. (2017). The trade-offs between milk production and soil organic carbon storage in dairy systems under different management and environmental factors. Science of the Total Environment 577: 61-72.

Summary

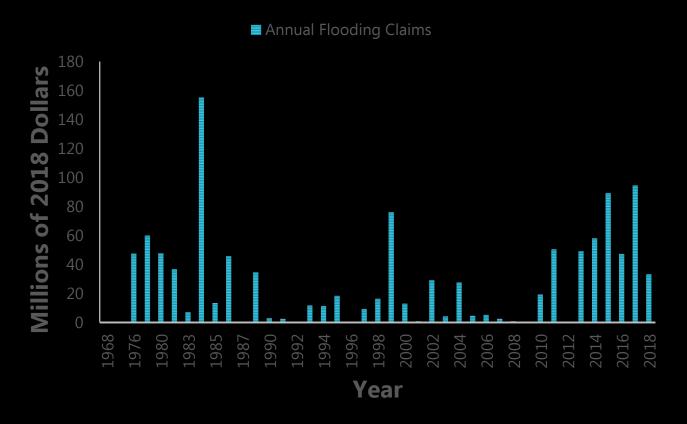
 \bigcirc

- 1. Soil carbon is critical for many ecosystem functions
- 2. NZ soils contain lots of carbon. **We need to maintain what we have!**
 - -Keep soils vegetated. Pasture is best.
 - -Minimise time between sward/crop removal and resowing
 - -Reduce irrigation expansion? Optimise irrigation scheduling??
- 3. 'Potential' opportunities to increase soil carbon
 - Increase sward diversity and rooting depth
 - Modify grazing regimes ('regenerative agriculture'??)
 - Implementation of full inversion tillage
 - Restore wetlands! (this will definitely work)
- 4. Current development of national and farm scale carbon monitoring systems will help identify land uses and management regimes which increase soil carbon

Flood Mitigation Schemes: Distributional Implications and Analysis


- Patrick Walsh, Landcare Research-Manaaki Whenua
- with
- · Thomas Robertson, Contractor
- Ryan Paulik, NIWA
- LINK SEMINAR 100
- Funding Deep South National Science Challenge

Floods in New Zealand


Flood damage increasing rapidly
Over \$300 million in insurance claims since 2014
Increasing population movement towards the coast.
Increasing threat of sea level rise

Insurance Council NZ Private Insurance Claims

Flood Risk Management in New Zealand

Ad hoc approaches early to mid 1900's

Centralized approaches – Central Government – Up to early 1990's

Devolved Approach Local risks - responsibility of local authorities

Centralised Flood Management

Problems with early flood management: *Soil Conservation and Rivers Control Act 1941*.

Significant subsidies for river management and flooding works.

Catchment Boards –broad powers and funding.

Under this regime many of New Zealand's current flood protection structures were built.

HEAVY GALE AND FLOODS IN OTAGO.

LOSS OF THE STAR OF TASMANIA, WATER NYMPH, AND WILLIAM MISKIN.

NINE PERSONS DROWNED AT TOTARA STATION.

By the arrival of the s.s. Beautiful Star from Dunedin yesterday we learn that the heavy gale which passed over the province on Monday and Tuesday night, the 3rd instant, had the most disastrous effects. The streets of Dunedin were flooded—there being in one part of Rattray street quite two feet of

Government Reforms

Variety of local government reforms 1980's and 1990's
Catchment boards authority given to regional councils
Ministry of Works and Development – previously \$40 million
1991 Resource Management Act

Public Act 1991 No 69
Date of assent 22 July 1991
Commencement see section 1(2)

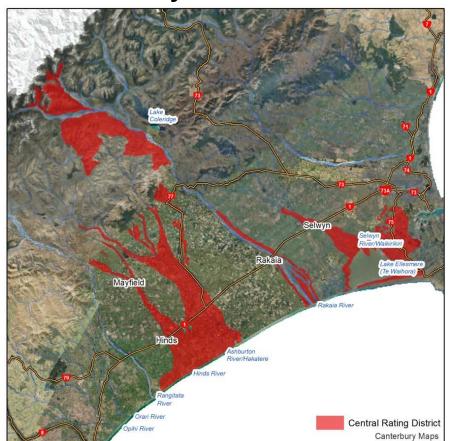
Devolved system - consistent with Government's policy on civil defence and emergency management

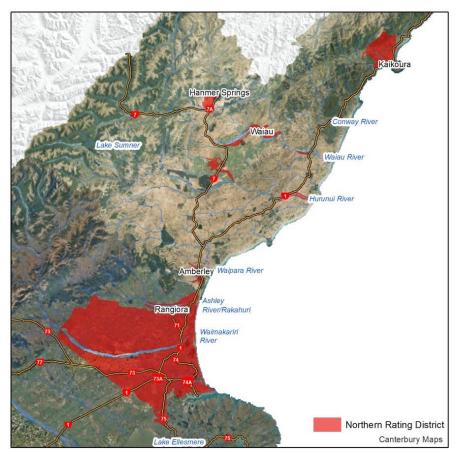
Local risks are the responsibility of local authorities.

Flood Management Funding

Central government funding mostly gone after RMA and devolved approach.

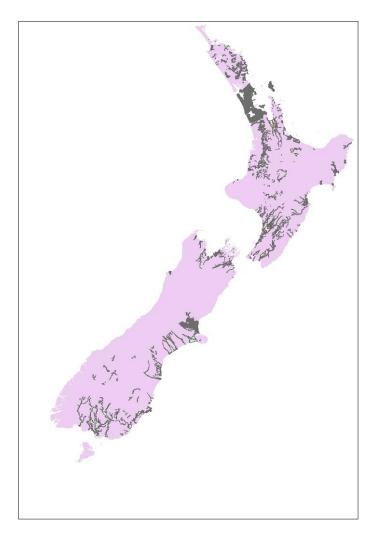
Two main sources now


1. Regional Council funding from general taxes


2. Flood schemes

- Use targeted rates (property taxes) on homes in flood risk areas.
- Augment flood management funding
- Some of the biggest "losers" in funding flood infrastructure:
 - Flood risk-free general tax payers
- Flood schemes those who benefit most pay more.

Canterbury – Flood Scheme locations



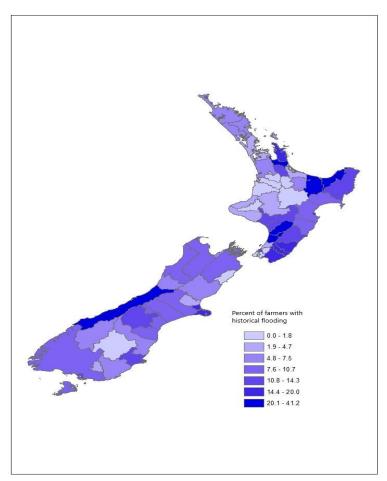
Flood Zones

Data collection through NIWA partners

Best estimate of flood hazards from publicly available data

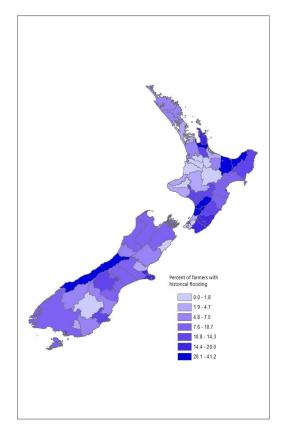
Flood Schemes

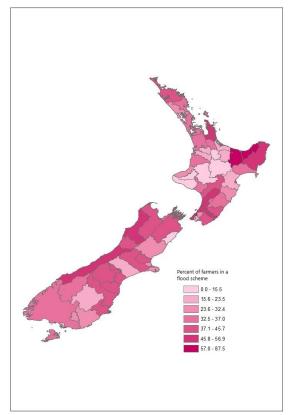
 No Schemes in Auckland, Nelson, Marlborough



Survey of Rural Decision Makers

"historically, has flooding been a concern" in your area?





Flood Risk data

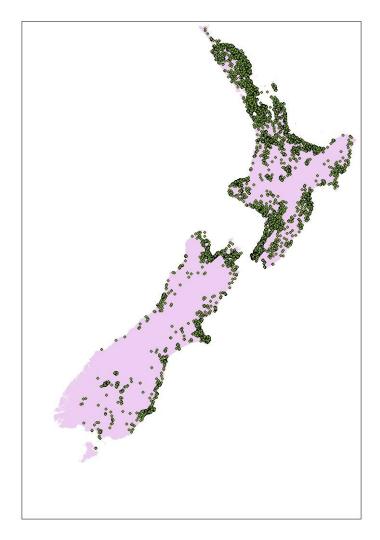
Flood Risk – perception Participation in Scheme

Flood Scheme Analysis

Several meshblock-level analyses of flood schemes.

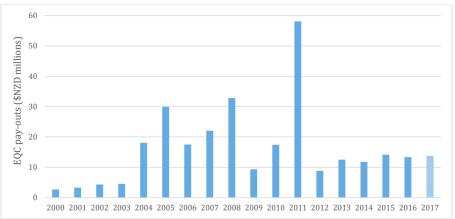
Briefly Review two today.

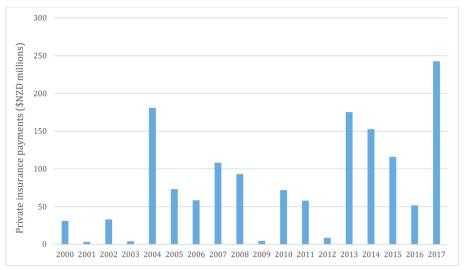
- 1. Impact of schemes on flood insurance claims
- 2. Scheme location analysis what local factors associated with schemes.


First – Impact of Schemes

Do schemes have an impact on flood damages?

Data on EQC Claims




		Year	Description	Date	Cost
	1	2017	South Island flooding	20-22 Jul	31.2
	2	2017	Nationwide snow/wind/rain	12-14 Jul	12.5
	3	2017	Cyclone Cook Remnants	13-16 April	18
	4	2017	Cyclone Debbie Remnants	3-7 April	66.4
	5	2017	Upper North Island Flooding	7-12 March	61.7
	6	2017	Port Hills Fires	13-17 February	18.3
	7	2017	Dunedin Flooding	13-Feb	1.7
	8	2017	Nationwide Severe Weather	18-23 January	8.6
	9	2016	Lower North Island Flooding and Wind	14-17 November	9.1
	10	2016	Flooding - Auckland to Waikato and Hailstorm Hawke's Bay	2-3 October	.55
	11	2016	Heavy Rain and Flooding - Coromandel, Bay of Plenty, Gisborne and Hawke's Bay	25-30 September	1.16
	12	2016	Nationwide Storm	7-9 September	3.8
	13	2016	Flooding and Gales - Auckland	29-Jun	1.81
	14	2016	Flooding- Lower North Island	5-May	3.9
	15	2016	Flood - Coromandel and Auckland	17-Apr	.59
2	16	2016	Flooding and Wind - North and South Islands	23-24 March	30.2
:	17	2015	Flood - Gisborne	21-Sep	.81
	18	2015	Flooding and Storm - Upper North Island	18-19 July	6.15
	19	2015	Flooding and Storm South Island West Coast	19-22 June	8.4
	20	2015	Flooding and Storm Lower North Island including Whanganui	18-21 June	41.5
	21	2015	Flood and Storm - North and South Islands excluding Otago	2-5 June	3
	22	2015	Flooding and Storm - Otago	2-4 June	28.2
	23	2015	Bay of Plenty Tornado	14-May	2.8
	24	2015	Extreme Weather Lower North Island	13-15 May	21.9
	25	2015	Cyclone Pam	15-18 March	1.45
	26	2015	Flooding and Storm North and South Islands	6-7 March	1.25
	27	2014	Hailstorm - North and South Islands	4-Nov	4.9
	28	2014	Auckland Power Outage	5-0ct	2.6
	29	2014	Northland - Coromandel Storms	8-10 July	18.8
	30	2014	Nelson-Tasman Floods	25-Jun	2.7

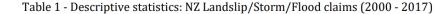
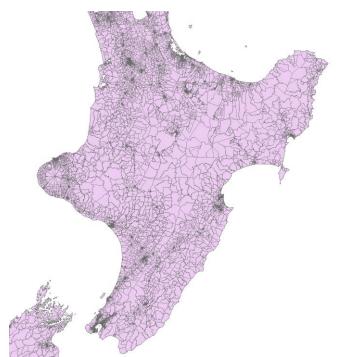


Figure 5: Total value of weather-related: EQC pay-outs (upper) and private insurance payments (lower)

	•
٠	ノ

	Total number of claims received	26,180					
	Claims with property location data	18,930					
	Unresolved claims	803					
	Claims from properties that had lodged a prior claim	2,194					
	Total amount paid for land damages (millions)	\$ 198.89					
	Total amount paid for building damages (millions)	\$ 92.99					
	Total amount paid for contents damages (millions)	\$ 2.62					
1	Number of resolved claims - including zeroes	25,377					
	Mean amount paid - all resolved claims including zeroes	\$ 11,420					
	Standard deviation of amount paid - all resolved claims including zeroes	\$ 40,340					
	Number of resolved claims - excluding zeroes	14,546					
	Mean amount paid - all resolved claims excluding zeroes	\$ 19,930					
	Standard deviation of amount paid - all resolved claims excluding zeroes						
	Notes: This table contains descriptive statistics for claims classified as 'Landslin/Storm/Flood' which						


Notes: This table contains descriptive statistics, for claims classified as 'Landslip/Storm/Flood', which were lodged with New Zealand's public natural hazard insurer (the NZ Earthquake Commission "EQC") between Jan 2000 and Oct 2017. "Claims with property location data" refer to those for which EQC hold the data to link the claim's unique property identifier to longitude-latitude coordinates. Unresolved claims are those which EQC classify as 'Open' – where the claim has not yet been settled. A prior claim refers to claim lodged relating to a different weather event. 'Zeroes' refer to claims which were lodged but for which the records indicate that the EQC did not pay out. All monetary values are expressed in 2017 NZ dollar values (specifically, by inflation using the NZ CPI to the second quarter of 2017). All claims exclude GST.

Econometric Models

Controlling for other social and economic factors, do schemes have an effect on:

Total sum of claims in a meshblock (\$)

Total sum of EQC claims paid

Tobit Regression Models

On average, flood schemes reduce meshblock claims amount by approximately

\$20,000 - \$40,000

There are multiple meshblocks in a scheme

However...

Location Analysis – where are Schemes

Targeted rates – homeowners – affordability?

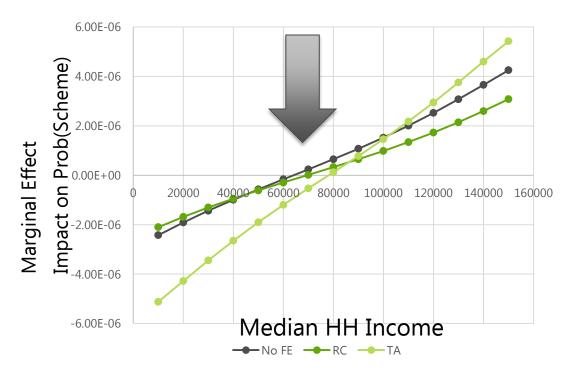
Distributional implications?

Hawke's Bay: "Where local landowners consider that a local community drainage/flooding scheme may be necessary in their catchment, please discuss with your local HBRC Councillor or HBRC asset management staff."

Social Capital

Community Strength

Wealth/Assets


Analysis – determinants of flood scheme location.

Results

- Flood schemes are widely used largely protecting ag industry/infrastructure.
- Flood risk consistently significant predictor
- Schemes have a significant impact on EQC claims
- However, potential distributional concerns
- Income is a significant factor.
- Very few studies of schemes

Marginal Effect of Income

\bigcirc

Biggest home insurer to charge more for natural disaster and weather risk

29 Apr, 2019 5:40pm

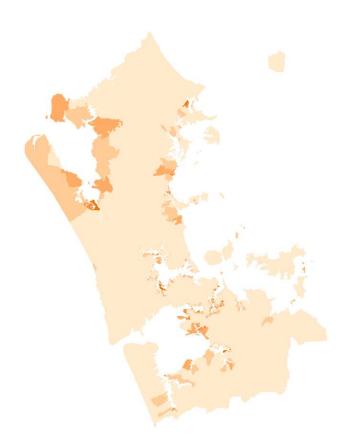
① 4 minutes to read

IAG, New Zealand's largest home insurer, will take natural disaster and weather related risk into account in its premiums. Photo / File

Will this reduce migration into flood/hazard zones?

Depends on information about flood zones

- More demand for flood hazard data.

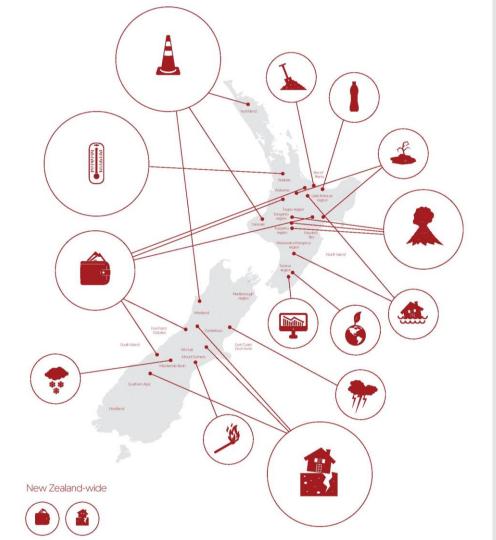


Auckland Sea Level Rise

Darker meshblocks have higher SLR risk.

Will require more flood management and schemes.

Other policies?

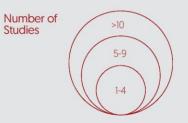

Thank you!

walshp@landcareresearch.co.nz

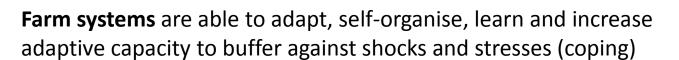
Enabling adaptation to climate change: Impacts, Implications, Decisions, Actions

Nick Cradock-Henry

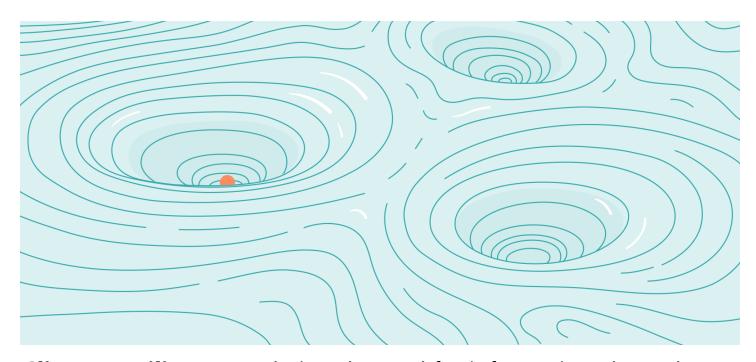
Primary industries contend with shocks and stressors.


- low-frequency, high-magnitude
- slow-onset, creeping hazards
- geo-climatic, socio-economic

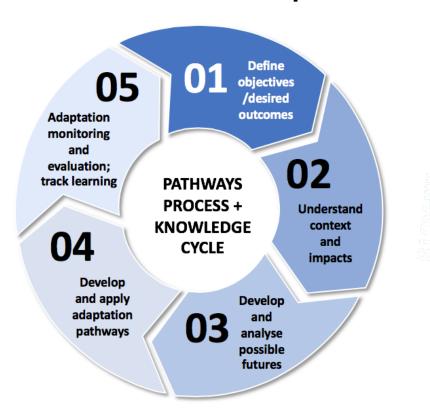
Compounding and cascading effects.


Key

Studies



Spector, S., Cradock-Henry, N.A., Beaven, S., Orchiston, C., 2018. https://doi.org/10.1007/s10113-018-1418-3



Climate resilience escalating demand for information about the future impacts of climate change to guide resilience in practice.

What information is needed to enable adaptation?

Adaptation knowledge cycle

IMPACTS

Direct impacts of higher Ts, lower P, extremes.

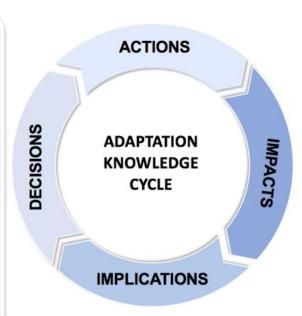
How, where, and what will the impacts of climate change be?

IMPLICATIONS

Impacts have implications for management.

What is at risk? In what ways?

DECISIONS


Capability and capacity to make informed risk decisions.

What decisions need to be made? And when?

ACTIONS

Appropriate actions to prevent or minimise damage.

How is change enabled?

May 19

What do we know?

 New knowledge and enhanced understanding of effects of climate change on primary industries.

Effects

- Drought
- Biosecurity
- Climate variability and extremes

Sector-specific knowledge

- Pastoral farming
- Cropping and arable
- Horticulture and viticulture
- Cross-sector science

Published literature (2007-2017)

- 224 NZ-papers on GHG mitigation
- 22 NZ-papers on adaptation

MPI SLMACC Research

- 32 projects (139 projects)
- Clark & Nottage, 2012 (\$1.5M) pan-sector
- Three projects > \$500,000
- Smaller, short-term (1-2 yrs.)
 projects ~\$150-200K

Drought

SLMACC

IIDA	Lead author	Year	Sector	Location
Impacts	Tozer	2011	Pastoral	National
Implications	Clark	2008	Cross-sector	National
Decisions	Burton	2008	Cross-sector	Regional; North Otago, South Canterbury
	Cradock-Henry	2013	Dairy	Regional; Bay of Plenty
	McCusker	2015	Pastoral	National
Actions	-	-	-	-

LITERATURE

IIDA	Lead author	Year	Sector	Scale/Location
Impacts	Sylvester-Bradley	2008	Horticulture	National
	Zhang	2007	Pastoral	National
Implications	Lee	2013	Dairy	National
Decisions	Cradock-Henry	2008	Dairy	Regional; Bay of Plenty
	Gray	2011	Dairy	Regional; Hawke's Bay
	Hopkins	2015	Cross-sector	National
Actions	-	-	-	-

LITERATURE

SLMACC

IIDA	Lead author	Year	Sector	Scale/location
Impacts	Newton	2011	Pastoral	Regional; Canterbury
	Tozer	2011	Pastoral	National
	Dodd	2011	Pastoral	National
	Lieffering	2008	Pastoral	National
	Fowler	2008	Pastoral	Regional; Canterbury, Hawke's Bay
	Guo	2008	Pastoral	National
	Crush	2014	Pastoral, Arable	National
	Zhang	2007	Pastoral	National
	Keller	2014	Pastoral	National
	Fowler	2013	Pastoral	Regional; Hawke's Bay
Implications	Renwick	2013	Cross-sector	National
	Lieffering	2016	Pastoral, drystock	Regional; Hawke's Bay, Southland
	Lee	2013	Dairy	National
Decisions	Rosin	2015	Pastoral	National
	Cradock-Henry	2015	Pastoral	National
	Gray	2011	Dairy	Regional; Hawke's Bay
Actions	-	-	-	-

IIDA	Lead author	Year	Sector	Scale/location
Impacts	Fowler	2013	Pastoral	Regional; Hawke's Bay
	Keller	2014	Pastoral	National
	Lieffering	2016	Pastoral; drystock	Regional; Hawke's Bay, Southland
	Zhang	2007	Pastoral	National
Implications	Lee	2013	Dairy	National
Decisions	Gray	2011	Dairy	Regional; Hawke's Bay
Actions	-	-	-	-

Pastoral farming

Horticulture and viticulture

LMACC

LITERATURE

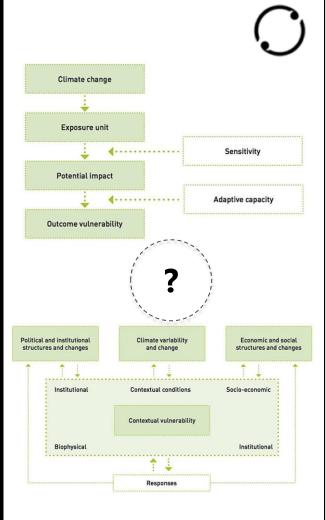
IIDA	Lead author	Year	Sector	Scale/location
Impacts	Beresford	2012	Horticulture	National
	Sturman	2015	Viticulture	Regional; Marlborough
Implications	Clark	2012	Cross sector	National
	Kenny	2008	Horticulture	Regional; Bay of Plenty, Hawke's Bay
Decisions	-	-	-	-
Actions	-	-	-	-

IIDA	Lead author	Year	Sector	Scale/location
Impacts	Sturman	2013	Viticulture	National
Implications	-	-	-	-
Decisions	Cradock-Henry	2016	Horticulture	Regional; Bay of Plenty
Actions	-	-	-	-

What do we not know? Empirical gaps

- Regions and industries affected due to biological, socio-cultural, economic characteristics.
 - Climatic and topographic diversity, regional variation in climate and soil.
- Identify and evaluate multiple adaptation pathways, as well as their limits and barriers, throughout our agri-food systems.
 - Requires the social factors defining these pathways to be at the forefront of research.
- Industry-specific, regionally based options and pathways.

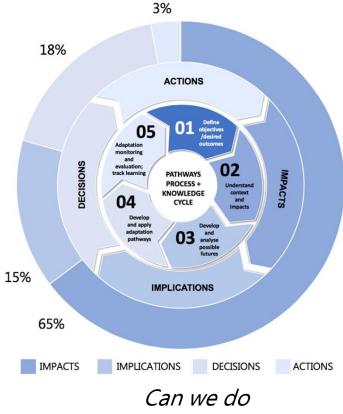
Adaptation is local.


Scale/Region		Impacts	Implications	Decisions	Actions
National	National	15	4	2	1
North Island	Northland	1			
	Auckland				
	Waikato	1			
	Bay of Plenty			2	
	Gisborne	1			
	Hawke's Bay	1		1	
	Taranaki				
	Manawatu				
	Wellington				
South Island	Marlborough	1			
	Tasman				
	Canterbury	3	1	1	
	West Coast				
	Otago				
	Southland				

Methodological gaps

- Research has either been top-down or bottom-up.
- Systems thinking and resilience science can provide conceptual and methodological tools.
- Need to identify robust adaptation options.

Adaptation strategies and behaviours are still skinny. We need better regionally-based adaptation strategy development."


- Workshop participant

How do we know we are doing the right thing?

Is it real?

Does it matter?

Can we do anything about it or its impacts?

- Adaptation research is needed to support adaptive planning
 - Decisions and Actions
 - Novel adaptation: options beyond the norm
 - Explore new long term options
- Sector specific knowledge necessary.
- Factors that lead to adaptation intention, decision and action.
- Need for adaptation in face of uncertainty
 - Robust decision support systems, tools, processes and practices for resilient climate futures.

\bigcirc

Barriers and enablers

- Uncertainty, resources, and psychosocial factors are the greatest impediments to more effective adoption.
- Greater integration and coordination across primary industries for adaptation is needed.
- Tools and policy measures for decision making under conditions of uncertainty.
- Bespoke information to meet end users' needs:
 - T-shape, breadth and depth

Conclusions

- There is no "silver bullet"; no single knowledge type needed.
 - Complex systems perspectives
 - Modelling insights with practitioners' experiences, values and attitudes as well as governance perspectives
- Understand underlying structures of decision-making and behaviour
- Relationships between mitigation, adaptation and sustainable development
 - Adaptation pathways for Hawke's Bay (MPI)

Thank you

Cradock-Henry, N.A., Flood, S., Buelow, F., Blackett, P., Wreford, A., 2018a. Mind the gaps: Synthesis and systematic review of climate change adaptation in New Zealand's primary industries. Ministry for Primary Industries, Wellington.

Cradock-Henry, N.A., Frame, B., Preston, B.L., Reisinger, A., Rothman, D.S. 2018b. Dynamic adaptive pathways in downscaled climate change scenarios. Climatic Change 150, 333–341. https://doi.org/10.1007/s10584-018-2270-7.

Cradock-Henry, N.A., Fountain, J., Buelow, F., 2018. Transformations for Resilient Rural Futures: The Case of Kaikōura, Aotearoa-New Zealand. Sustainability 10, 1952. https://doi.org/10.3390/su10061952

Cradock-Henry, N.A., Fountain, J. 2019. Characterising resilience in the wine industry: insights and evidence from Marlborough, New Zealand. Environmental Science & Policy 94, 182–190. https://doi.org/10.1016/j.envsci.2019.01.015

Cradock-Henry, N.A., Buelow, F., Flood, S., Blackett, P., Wreford, A., 2018. Adaptation knowledge for primary industries: known, not known and needed. Climate Risk Management, *in review*.

Cradock-Henry, N.A., Flood, S., Buelow, F., Blackett, P., Wreford, A., Towards a typology for adaptation knowledge. Environmental Research Letters, *in review*.

Spector, S., Cradock-Henry, N.A., Beaven, S., Orchiston, C., 2018. Characterising rural resilience in Aotearoa-New Zealand: a systematic review. Reg Environ Change. https://doi.org/10.1007/s10113-018-1418-3

For more information:

cradockhenryn@landcareresearch.co.nz

