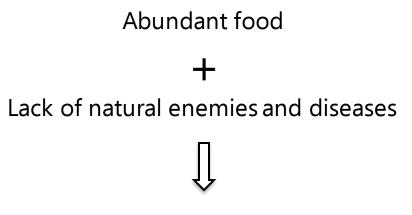
\bigcirc


Eradicating the Last 5%: Catching the Uncatchable Rogue

Presented by Graham Hickling and Patrick Garvey Manaaki Whenua – Landcare Research

The impacts of <u>large populations</u> of introduced mammalian predators in NZ and Australia are widely recognized

Focus has been on large-area control methods capable of removing <u>most</u> predators

However, some <u>individual</u> predators also have outsized impacts

North Head, Australia – 2015

• a single fox killed 26 little penguins in two weeks (nearly 20% of the local penguin population)

Individual predators can have outsized impacts

Stephen's Island / Takapourewa, NZ - 1894

The Lighthouse keeper's cat ("possibly named Tibbles") and her offspring drove the endemic Stephens' Island wren to extinction

Galbreath and Brown, Notornis 2004

Individual predators can have outsized impacts

 A male cat killed 102 short-tailed bats at Rangataua Forest, Ruapehu

Scrimgeour et al., NZ J. Zool. 2012

• A female German shepherd killed an estimated 500 kiwi in Waitangi forest

Taborsky, Notornis 1988

 A single rat was suspected of killing >80% of NZ shore plover on Mana Island in 2007 and on Waikawa Island in 2012

> https://www.doc.govt.nz/nature/nativeanimals/birds/birds-a-z/shore-plover/

\bigcirc

The individuals that cause the most damage can also be the most difficult to control

• Noises Islands 2004: a lone rat avoided detection for 18 weeks before being captured in a trap baited with penguin meat

Russell et al. 2005, Nature

The individuals that cause the most damage can also be

- the most diffid
 - •

ises Islan		Number		8 weeks
nonths bef		30	Exposure (h)	enguin meat
	2 Snaptrap		10	
	3 Waxed device	20	70	
	4 Tracking tunnel	15	70	
10	5 Trained dogs	15	70	
and the second	6 Permanent grid	2	16	
- S. S.	7 Peanut butter bait	20	250	
<u>.</u>	8 Buried traps	20	50	
	9 Poison bait	5	40	
	sison bait	5	30	

The individuals that cause the most damage can also be the most difficult to control

- In 2015, a stoat penetrated 'mammal-proof' Orokonui Ecosanctuary, Otago Peninsula
- Eliminated the local population of Saddlebacks
- 12 months of effort to capture that single stoat



https://www.odt.co.nz/news/dunedin/stoats -killed-orokonui-ecosanctuary

\bigcirc

The individuals that cause the most damage can also be the most difficult to control

Amos et al. 2016, R Soc open sci

MWLR's Eradication Science (ES) Programme

5-year MBIE-funded research effort, running from Oct 2019 through Sept 2024.

Key questions:

- What behavioural characteristics contribute to some individuals surviving control?
- How can we use novel combinations of cues to overcome these survival behaviours?

Three target species:

Research design: four interconnected Research Aims (RAs)

Research Aim 1.1 Understanding survivor behaviour

<u>RA 1.1 – Understanding survivor behaviour</u>

Question – What behavioural characteristics contribute to some individuals surviving control?

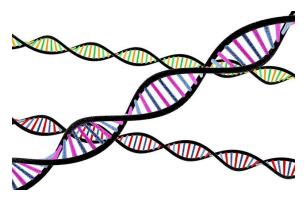
Control methods – Trapping, Toxic baiting

Central Hypotheses: Individuals survive due to:

- 1. Behavioural traits ('personalities')
- 2. Fear of control tools e.g. avoids 'scary' trap
- 3. Learned e.g. sub-lethal

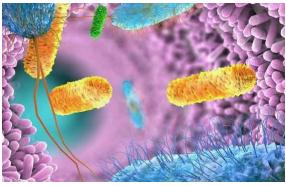
Additional hypotheses:

- 1. Intrinsic differences e.g. age, sex, condition, etc
- 2. Dietary preference/ microbiome
- 3. Genetic resistance to toxins (1080 control)
- 4. Random subset of a population (Null hypothesis)



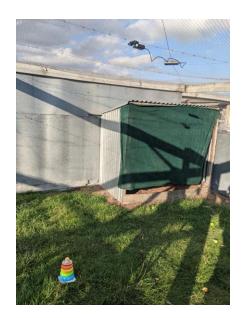
Progress on RA1.1: Multiple factors could affect survivorship

\bigcirc



Genotype

Diet/Microbiome


Random subset

Personality - Measuring individual behaviour traits

- Exploration
- Activity
- ~trap/bait encounter

- Neophobia
- ~trap/bait interaction

- Boldness
- Docility
- ~trap/bait encounter

Survivors - Fear of baits and devices

Pests are under selection pressure to recognise and avoid devices

<u>Innate</u>

- Risk aversion
- Neophobia

<u>Learned</u>

- Escape from trap
- Sub-lethal poisoning
- Social cues
- Human odour

Progress on RA1.1 Survivors of trapping operations

Field Experiment - Lottery Bush

Are certain possum personalities more likely to survive?

Progress on RA1.1 Survivors of trapping operations

- How do pests respond to a novel trap?
- *Will they get captured?*
- What are the traits of recalcitrants?

Progress on RA1.1 Survivors of toxic bait operations - I

Nelson Lakes 1080 trial - Compare the traits of 'average' possums vs. survivors

Two site:Uncontrolled
Nelson LakesControl measure:1080 control operationTrials:Personality
Neophobia (food)
Diet/Microbiome

Progress on RA1.1 Survivors of toxic bait operations - II

Franz Joseph 1080 trial - Compare the traits of 'average' possums vs. survivors

Study Design – Winter 2021:

- 1. Capture rats & possum prior to control operation
- 2. "False survivors" brought into captivity
- 3. Record individual measures: personality, diet, genetic, etc.
- 4. Radio/GPS collar
- 5. Capture survivors

Research Aim 1.2 Manipulating survivor behaviour

RA1.2 – Manipulating survivor behaviour

How can we use sensory cues and alter risk perception to capture survivors?

Sensory cues – Sound, Sight, Scent

4Fs of animal behaviour

- Sensory cues to target pest motivations
- Sensory cues in combination

Change perception of devices

Fighting

Feeding

Fornication

Next steps

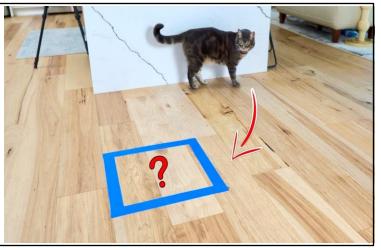
RA1.1

Personality and behaviour studies

- Survivors of 1080 control possums
- Responses to devices possums, rats, and stoats

Field trials

- Lottery Bush May to August 2021
- 1080 field trial
- September 2021


RA1.2

Sensory cues and devices

- Scent trials (the 4 Fs) April to July 2021
- Auditory trials
- January to September 2021
- Visual lure trials 2021
- September to December
- Lure combinations

Automated smart devices

Eradication Science - Collaboration

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

ABERDEEN

Vision Mātauranga:

Sensory research:

Personality research:

Hapū research partners

- Ngāti Porou,
- Tūhoe Tuawhenua
- Northern Taranaki iwi
- Moriori imi

UNIVERSITY OF CALIFORNLA

