

Climate change, 'mega-masts' and pests

Jenny Christie^{1,} Roger Pech²

¹Department of Conservation ²Landcare Research

Predicting mast events - the traditional method

ECOLOGY LETTERS

Ecology Letters, (2012)

doi: 10.1111/ele.12020

LETTER

Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change

The ΔT model

Difference in average summer temperature

$$\Delta T_t = T_{t-1} - T_{t-2}$$

t-2 *years ago*

t_{t-1} Last year

Seed this year

Dave Kelly, 1* Andre Geldenhuis, 2 Alex James, 2 E. Penelope Holland, 3 Michael J. Plank, 2 Robert E. Brockie, 4 Philip E. Cowan, 3 Grant A. Harper, 5 William G. Lee, 3,8 Matt J. Maitland, 5 Alan F. Mark, 6 James A. Mills, 7 Peter R. Wilson 3 and Andrea E. Byrom 3

Ecology Letters, (2012)

doi: 10.1111/ele.12020

LETTER

Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change

Figure 1 in five diverse plant families, seed crops were better predicted using temperature differential ΔT (summer temperature in the previous year minus summer sture 2 years before, right column) than previous summer absolute temperature T_{ed.} (centre). The horizontal axes have different minima, but identical ranges. Light grey p values and regression lines were not significant. Summer is January-March in all cases. For information on all 26 datasets see Table 2.

Ecology Letters, (2012)

doi: 10.1111/ele.12020

LETTER

Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change

Figure 1 in five diverse plant families, seed crops were better predicted using temperature differential ΔT (summer temperature in the previous year minus summer sture 2 years before, right column) than previous summer absolute temperature T_{ed.} (centre). The horizontal axes have different minima, but identical ranges. Light grey p values and regression lines were not significant. Summer is January-March in all cases. For information on all 26 datasets see Table 2.

RESEARCH ARTICLE

Climate-Based Models for Pulsed Resources Improve Predictability of Consumer Population Dynamics: Outbreaks of House Mice in Forest Ecosystems

No mast forecast for 2015

 $\Delta T \ 2015 = T_{\text{summer } 2014} - T_{\text{summer } 2013}$

Mast prediction for 2016

 $\Delta T \ 2015 = T_{\text{summer } 2014} - T_{\text{summer } 2013}$

Key questions

- 1. Are some areas in New Zealand more prone to masts? Are masts always widespread?
- 2. How often have mega-masts happened in the past?

('mega-mast': > 50% of beech forest predicted to experience a mast)

- 3. Will the frequency of mega-masts increase in the future?
- 4. How do mega-masts affect the cost of controlling invasive mammals?

Occurrence of masts

ΔT maps for 1974-2014

1a. Some areas are mast-prone

1b. Mast area is highly variable

1b. Mast area is highly variable

2. Mega-masts during 1974-2014

Years with 'predicted' beech mega-masts (>50% beech forest with ΔT >0.84)

2. Mega-masts during 1974-2014

Years with 'predicted' beech mega-masts (>50% beech forest with ΔT >0.84)

2. Mega-masts during 1974-2014

Years with 'predicted' beech mega-masts (>50% beech forest with ΔT >0.84)

Van Vuuren et al. Climate Change (2001) 109:5–31

3. Global climate change to 2100

ΔT projections for 4 climate-change scenarios:

- RCP 8.5 = very high greenhouse gas emissions
- RCP 6 = high level stabilisation
- RCP 4.5 = intermediate stabilisation
- **RCP 2.6** = declining greenhouse gas emissions

3. Frequency of mega-masts: 2001 – 2100

	Number of mega-masts per 25 years				
	RCP 2.6	RCP 4.5	RCP 6	RCP 8.5	Historic data
Time period	Declining emissions	Intermediate stabilisation	High level stabilisation	Very high emissions	
1976 – 2000	5	5	5	5	8
2001 – 2025	4	4	3	6	
2026 – 2050	4	3	3	6	
2051 – 2075	4	2	3	5	
2076 – 2100	2	3	1	0	
2001 - 2100	14	12	10	17	

- Mega-mast: >50% beech forest with ΔT>0.84
- Results are based on NIWA projections using the UK Hadley Centre atmospheric general circulation model

12 1976-2000 actual historic 10 RCP2.6 ■ RCP4.5 8 Number of masts ■ RCP6.0 ■ RCP8.5 0.2 0.9 Proportion of beech forest masting 14 2001-2025 ■ RCP2.6 12 ■ RCP4.5 10 Number of masts ■ RCP6.0 ■ RCP8.5 4 0.1 0.2 0.4 0.5 0.7 0.8 0.9 Proportion of beech forest masting 14 2026-2050 ■ RCP2.6 12 ■ RCP4.5 10 ■ RCP6.0 Number of masts ■ RCP8.5 4 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1 Proportion of beech forest masting

3. Frequency distribution of masts

4. Mega-masts & the cost of pest control

Expenditure on aerial control (Department of Conservation, 2003-2013)

For the 2014 mega-mast:

- 90% of beech forest had ΔT > 0.84
- 3,812,500 ha of beech forest had high probability of a mast
- estimated cost of aerial baiting for all predicted beech-mast areas = \$68M

Summary

Ecology:

- Masts are correlated with summer temperatures
- Masts result in outbreaks of invasive mammals
- Predation by invasive mammals can be catastrophic for native fauna

Management:

- 'Battle for our Birds': approx. \$12M for pest control
- 11 'mega-masts' in beech forest in the last 40 years
- Potential costs of pest control: \$42M \$68M per event

Climate change could:

- affect the frequency of 'mega-masts' in NZ forests
- result in more (RCP 8.5), or similar (RCP 2.6, RCP 4.5, RCP 6), episodic high costs of pest control

Summary

ΔT model

Ecology:

- Ma Question: Can meta-populations of indigenous
- Ma species/communities survive widespread threats
- Pre such as those following 'mega-masts'?

fauna

native

Management:

- 'Ba Question: How well does annual fiscal planning
- 11 cope with costly episodic threats, or should DOC
- Po take out insurance for 'mega-masts'?

Climate change could:

- affect the frequency of 'mega-masts' in NZ forests
- result in more (RCP 8.5), or similar (RCP 2.6, RCP 4.5, RCP 6), episodic high costs of pest control