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Summary 

Project and client 

 Accurately predicting the distribution of species across landscapes at various scales is 

a fundamental goal in ecology and an active area of research. Species distribution 

models (SDMs) are quantitative tools that relate the occurrence or abundance data at 

known locations of individual species (distribution data) to information on the 

environmental characteristics of those locations.  

 SDMs have a wide range of applications, including predicting the impacts of climate 

change on biodiversity, managing threatened species, predicting the distributional 

trajectories of invasive species, identifying sites for biological control, and identifying 

sites appropriate for species reintroduction.  

 The SDM process uses computer algorithms to predict a distribution of species in 

geographical space based on their known point locations across environmental space. 

They are becoming increasingly important in applied ecology, with new and revised 

methods under frequent development.  

 In this report we first review the background of SDMs and the most commonly 

applied approaches. We also discuss the types of predictors needed to construct 

SDMs and the most commonly used species location data. We then evaluate four 

online turn-key toolboxes for implementing SDMs. 

 This report satisfies the requirement of Critical Step 1.2.3 ‘Evaluation of environments 

to model and quantify extent of full natural range occupied’ for the research 

programme ‘Innovative data analysis for reporting and decision making’, funded 

under MBIE contract to Manaaki Whenua – Landcare Research (PROP-38356-ETR-

LCR). 

Objective  

 To evaluate at least two online toolboxes for implementing SDM modelling that could 

be integrated into a national information infrastructure. 

Methods 

 We reviewed the most commonly applied approaches and modelling steps used in 

SDMs. 

 We also reviewed the types of predictors needed to construct SDMs, and the most 

commonly used types of species location data.  

 We then evaluated four online ‘turn-key’ toolboxes for implementing SDMs, focusing 

on the feasibility of adapting these toolboxes for New Zealand, incorporating both 

New Zealand bio- and environmental data. These were: 

 the Atlas of Living Australia 

 the Biodiversity and Climate Change Virtual Laboratory (BCCVL) 

 Wallace 

 Lifemapper. 
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Results 

 Four types of species occurrence data can be used to develop SDMs. There are three 

major algorithms for presence-only models (Convex Hull, BIOCLIM, DOMAIN), seven 

for presence-background models (MaxEnt, MaxLike, Regression methods, SPP, 

NPPEN, ENFA, GARP), eight for presence-absence models (GRM, ANN, BRT, Random 

Forests, MDA, MARS, iCAR, SVMs), and two for occupancy-detection models (false 

positive occupancy models, O-D). 

 The limitations of input species data that must be considered before modelling 

include (i) the ability to estimate site prevalence, (ii) the impact of imperfect detection, 

and (iii) the impact of sampling bias. 

 A broad range of environmental and biotic drivers of species occurrence could 

potentially be incorporated as predictors into SDMs, including climate, topography 

and soil characteristics, indicators of competition, predation, herbivory and 

mutualisms, disturbance history, and dispersal limitation. Currently there are 

limitations caused due to lack of data and the ability of SDM algorithms to 

incorporate such predictors in an appropriate way. 

 Turn-key systems differ markedly in the number of different SDM algorithms they 

support. All systems reviewed here allow data (both species occurrence and 

predictors) to be either incorporated from existing networks or supplied by the user, 

with some limitations on the latter. All provide some tools for assessing model fit, but 

none allow assessments of primary data, such as outlier detection. Only the BCCVL 

allows ensemble models to be generated and SDM outputs to be readily compared 

across different analyses. All models generated could be reproduced. The systems 

could be applied to New Zealand if additional species data and predictor data were 

supplied. 

Conclusions 

 Turn-key systems are relatively easy to use, and they produce appealing graphical 

outputs, extending the accessibility of the approach to many more users. However, 

they result in serious concessions, because many (or most) of the myriad of adjustable 

SDM settings are concealed or inaccessible to the user. 

 A 2013 review found that the key components of the model building process – such 

as evaluation of model fit and performance, uncertainty assessment, and inspection of 

response curves – were not available in many turn-key SDM applications. 

Recommendations 

 We do not advocate that Manaaki Whenua – Landcare Research (MLWR) should 

support the development and subsequent use of potentially over-simplified tools, 

such as ‘black box’ turn-key modelling software, by end users to support conservation 

decisions. 

 MLWR needs to promote a wider recognition that SDMs should be developed by 

experts with clear knowledge of the target species and statistical approach. This would 

be best achieved by continuing to support the development of in-house expertise in 
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SDMs and ensuring that outputs of SDMs that can support decision-making are 

widely publicised and made available. 

 There is little interest among MWLR staff in using turn-key systems, so we do not 

recommend tailoring existing turn-key systems for use in New Zealand for internal 

MWLR purposes. 

 A current barrier to the development of credible SDMs in New Zealand is lack of ready 

access to both species and environmental data.  

 MWLR is well placed to:  

 further develop effective data delivery pipelines 

 provide primary data for users to incorporate into their own modelling (e.g. make 

data available to be harvested by R packages in the same way that the R-package 

dismo has direct access to GBIF point records) 

 provide appropriate spatial covariate data for users to incorporate into their own 

modelling with minimal pre-processing (e.g. allow automatic scaling of layers to 

consistent resolutions and extent). 
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1 Introduction 

Accurately predicting the distributions of species across landscapes at various scales is a 

fundamental goal in ecology and an active area of research. Species distribution models 

(SDMs) are quantitative tools relating occurrence or abundance data at known locations of 

individual species (distribution data) to information on the environmental characteristics of 

those locations. These types of models are also referred to as ‘ecological niche models’, 

‘habitat distribution models’, ‘resource selection functions’, and ‘bioclimatic envelopes’ 

(Elith & Graham 2009).  

SDMs have a wide range of applications including predicting the impacts of climate 

change on biodiversity, managing threatened species, managing threatening processes, 

predicting the distributional trajectories of invasive species, identifying sites for biological 

control, identifying sites appropriate for species reintroduction, detecting un-surveyed 

sites with high potential to support rare species, managing interactions between predators 

and prey species or herbivores and target plants, assessing environmental impacts, and 

predicting past distributions of organisms, to name a few (Guillera-Arroita et al. 2015). 

The SDM process uses computer algorithms to predict a distribution of species in 

geographical space based on their known point locations across environmental space. The 

environment is in most cases represented by climate data (such as temperature and 

precipitation), but other variables such as soil type and land cover can also be used. If 

models are based on environment alone, they predict locations where the species could 

occur in the absence of dispersal barriers, historical constraints, or biotic interactions. 

Incorporating variables that depict these constraints (e.g. disturbance history, current 

vegetation cover, presence of competing species) allows the full natural range to be 

predicted.  

The use of SDMs is rapidly expanding and new methods are continually being developed, 

including more recent advances in techniques aimed at predicting multiple species 

simultaneously while incorporating biotic interactions (joint species distribution models; 

Warton et al. 2015). Robust and repeatable SDMs will require consensus on and 

standardisation of methodologies, which does not currently exist despite active debate. 

SDMs are becoming increasingly important in applied ecology, with new and revised 

methods under frequent development. Most of these methods are accessed using 

computer code/scripts run in command line interfaces (e.g., R and Python) or using more 

user-friendly software with graphical user interfaces (sometimes referred to as ‘turn-key’ 

approaches). Coded scripts are flexible, powerful, and provide high standards of 

reproducibility and transparency; however, code is often poorly documented and difficult 

for inexperienced users to run and customise. Turn-key approaches are usually much 

easier to navigate and use but are usually less customisable. Also, because most cutting-

edge approaches are developed using computer code, there is often a lag before the 

latest approaches are made available with a turn-key interface.  

There are also concerns about the lack of reproducibility of turn-key approaches, which 

are often unable to provide appropriate documentation of the steps taken during analysis 

(Hampton et al. 2015; Borregaard & Hart 2016). Plus there is the potential for 
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inexperienced users to misapply methods that are not fully understood. Despite these 

disadvantages, turn-key approaches make complicated methodology accessible to a much 

greater audience, and there have been efforts to increase their customisation and 

reproducibility (e.g. 'Wallace'; Kass et al. 2018a). 

In this report we first review the background of SDMs and the most commonly applied 

approaches. We also discuss the types of predictors needed to construct SDMs, and the 

most commonly used species location data. We then evaluate four online turn-key 

toolboxes for implementing SDMs: Lifemapper, The Atlas of Living Australia, Wallace, and 

The Biodiversity and Climate Change Virtual Laboratory (BCCVL). Our evaluation will 

consider the feasibility of adapting these toolboxes for New Zealand, incorporating both 

New Zealand bio- and environmental data. 

2 Methods 

In this report we review the background of SDMs, including the type of species and 

environmental data used to parameterise different modelling approaches, the impact of 

data bias on the interpretation of predictions, and the evaluation of these models. We also 

evaluate four automated SDM applications, referred to as ‘turn-key’ approaches: 

Lifemapper (Stockwell et al. 2006), the Atlas of Living Australia (ALA) (Atlas of Living 

Australia 2018), The Biodiversity and Climate Change Virtual Laboratory (BCCVL) (Hallgren 

et al. 2016), and Wallace (Kass et al. 2018a). 

We will document the effectiveness of these systems to encompass: 

1 support for alternative modelling approaches, such as MaxEnt, generalised linear 

models (GLMs) and generalised additive models (GAMs) 

2 the ability to integrate with national and international federated data networks, such 

as the Global Biodiversity Information Facility (GBIF) 

3 the ability to incorporate users’ own species occurrence and environmental data 

4 the ability to assess model fit 

5 the ability to assess the influence of idiosyncrasies in primary data (i.e. outliers) on 

SDM outputs 

6 the ability to make comparisons across multiple SDM models (i.e. with different 

predictor variables, resolutions or time scales, etc.) 

7 the ability to assess the impact of data bias (spatial, temporal) on results 

8 reproducibility 

9 the spatial extent of applicability (e.g. a specific continent, global, etc.). 

To evaluate each turn-key application we ran models across five different terrestrial 

organisms, covering a range of taxa: a woody plant native to New Zealand and Australia 

(mānuka, Leptospermum scoparium), a globally distributed herb (Plantago lanceolata), a 

common urban bird (house sparrow, Passer domesticus), and a New Zealand pest animal 

species (brushtail possum, Trichosurus vulpecula). These species were selected because 
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they represent a range of growth forms and organism types, and, while we do not present 

the results of these individual species’ distributions, running each turn-key approach 

multiple times across a range of taxa provided a greater opportunity for assessment. 

Evaluations were all conducted during March and April 2018. 

It should be noted that in this report we do not assess the accuracy of the SDM outputs 

themselves, but rather the ability of the user to interact with the application and critically 

evaluate the outputs. For the purposes of this report we assume that each approach 

produces model summaries and outputs consistent with those recommended for each 

specific SDM technique.  

3 Results 

3.1 Species distribution modelling background 

Although the concept of a map showing the distribution of a species is easy to grasp, the 

reality of the process required to produce accurate distribution maps is much more 

complex. Five major categories of questions arise when considering the types of online 

toolboxes that would be appropriate for automating, or semi-automating, the process of 

creating SDMs. These are: 

1 typology of SDMs: what class of SDMs is appropriate given the available species 

occurrence data? 

2 data bias: how will issues such as spatial bias be addressed?  

3 required classes of environmental and biotic predictors for SDMs: what data are 

available to create accurate SDMs? 

4 SDM approaches: which specific modelling approach, or combination of modelling 

approaches, is appropriate? 

5 model credibility and application: how will models be evaluated in terms of their 

predictive accuracy? 

These questions are reviewed briefly in the sections below. 

3.1.1 Typology of species distribution models 

There are four types of species occurrence data typically used in SDMs, each with its own 

suite of techniques developed for its analysis (Guillera-Arroita et al. 2015). The type of 

species data available and how these are distributed across environmental space are of 

fundamental importance when selecting an appropriate SDM technique. 

 Presence-only models use information about sites where the species was detected 

without taking into account the environmental conditions in the rest of the landscape. 

 Presence−background models (sometimes also called ‘presence-only’ models) 

estimate habitat preferences by comparing the environmental characteristics at sites 

where the species has been recorded with a random subset of ‘background’ (or 
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‘pseudo-absence’) locations. Guillera-Arroita et al. (2015) state that it is not possible 

to tell whether a species is rare and well surveyed or common but under-surveyed 

from presence records alone. A drawback of these models is that they assume 

sampling is unbiased − an assumption that is rarely met. The consequence is that 

habitat suitability may be overestimated for environments that have been sampled 

more intensively and underestimated for those less surveyed. There is also debate 

over how background locations can be adequately selected when using these models, 

in terms of the geographical extent that is considered and the appropriate sample 

size. Both have been shown to have a notable effect on model outputs (VanDerWal et 

al. 2009; Stokland et al. 2011). Due to the increasing availability of point records from 

museum or herbarium specimens, these models are commonly used (Guillera-Arroita 

et al. 2015). 

 Presence−absence models estimate the probability of observing a species at a site by 

comparing the environmental characteristics at sites where the species was detected 

with those at sites where it was not. The effect of sampling bias is less critical because 

it does not introduce bias in the estimation. Rather, sampling bias can reduce the 

precision of estimates for those parts of the environmental space that are under-

sampled relative to others. 

 Occupancy−detection models use detection and non-detection records that have 

been collected in such a way that the detection (or observation) process can be 

explicitly modelled. This provides information about the probability of detecting the 

species given that it is present at a site and how that probability may vary from site to 

site or visit to visit. This allows models to account for imperfect detection in the 

estimation of species occupancy probability. The effect of sampling bias is similar to 

that in presence−absence models. These models are very information rich, but data 

are often not available because it is generally required that sites be revisited or 

sampling time quantified. 

3.1.2 Data bias 

When building an SDM it is important to consider three limitations on the type of species 

data being used, and how these might affect the interpretation of the SDM’s estimates (for 

more discussion, see Guillera-Arroita et al. 2015): 

1 Can site prevalence be estimated? 

2 What is the impact of imperfect detection? 

3 What is the impact of sampling bias? 

Estimation of prevalence 

The proportion of sampled sites where a species is present is known as prevalence. While 

not always fully appreciated, the outputs of presence−background SDMs are not an 

estimate of actual probabilities of occurrence, but rather a relative likelihood of species 

occurrence given the model. This is because presence-background data cannot reveal 

whether a species is rare and well surveyed or common but under-surveyed (Guillera-
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Arroita et al. 2015). Presence−absence or occupancy−detection data, and an appropriate 

SDM technique, are required to distinguish between these two possibilities. 

Imperfect detection 

Surveys frequently fail to accurately detect all species present at a site, and if this is not 

accounted for SDMs may end up estimating species observations rather than species 

occurrences (Gu & Swihart 2004). Imperfect detection affects presence−background and 

presence−absence data sets and SDM approaches, meaning only the relative likelihood of 

occurrence can be estimated (but see Guillera-Arroita et al. 2015 for exceptions). When 

occupancy−detection data are available, estimates of occurrence probabilities can be 

made. 

Sampling bias 

Presence–background SDM methods assume that data were randomly sampled from sites 

selected without bias. However, most of the sources of data for these models (herbarium 

and museum records, citizen science records) are collected opportunistically and have a 

spatial bias toward easily accessible and public spaces (Guillera-Arroita et al. 2015). 

Unfortunately, these locations are often correlated with the environmental covariates 

commonly included in SDMs and can result in biased estimations of environmental 

relationships. It is difficult to control for this in presence−background SDMs. Sampling 

bias has a less critical impact on presence−absence or occupancy−detection models 

because it does not introduce bias in the estimation (Phillips et al. 2009), but it does 

reduce the precision of the model.  

3.1.3 Required classes of environmental and biotic predictors for 

SDMs 

Key environmental and biotic drivers of species’ occurrence must be identified and 

characterised for SDMs to produce realistic predictions. Because SDMs are typically 

generated from predictions derived from readily accessible spatial layers, the need to 

include the key environmental gradients often remains unmet.  

For example, while climate often drives plant species distribution at continental scales, 

topography and soil fertility are critical at smaller scales. In New Zealand the contribution 

from soils is significant (Wardle 1991; McGlone et al. 2010) because complex topographies 

and intense weathering rates drive large variation in fertility over small distances. 

Regional-scale studies show clear relationships between vegetation composition and 

topographic or age-related soil fertility gradients (Richardson et al. 2004; Jager et al. 2015). 

These gradients are difficult to model because soils data from native ecosystems are 

sparse, and estimating local topography from remotely sensed data is difficult. 

Furthermore, existing soil fertility layers used by modellers (Leathwick et al. 2002) do not 

reflect the many aspects of soil chemistry most important to indigenous forest and 

shrubland species (e.g. organic phosphorus, pH). Vegetation communities commonly 

respond to abrupt changes in environmental variables (Brown 1994; Zimmermann & 

Kienast 1999) and this problem is widespread globally. 
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In addition to environment, species distributions also reflect biotic processes such as 

competition, predation and facilitation, and these can also interact with environment. For 

example, theory predicts that competition intensifies as soil fertility increases, excluding 

many species from sites that are otherwise suitable, and additional factors such as rainfall 

and soil fertility can interact strongly, often influencing species richness patterns (Wright 

1992). Species interactions continue to represent a significant challenge for SDMs, but the 

recent development of joint SDM approaches improves the capacity for these processes to 

be incorporated (e.g. Ovaskainen et al. 2016). 

Species distributions may reflect abrupt limits caused by disturbance events such as 

earthquakes (Wells et al. 2001), glaciation (Richardson et al. 2004) or fire (Fensham et al. 

2003), many of which may be historical. As a result, the historical stability of a site can have 

a strong influence on the accuracy of many SDM approaches. An organism may be absent 

from a suitable site due to past events, and this can influence SDMs through non-

representative model input data (survey data) and predictions. Geographical and 

biological limits on dispersal can further affect the ability of populations to colonise new 

locations or re-establish following disturbance.  

Lastly, modern biodiversity databases have an unavoidable bias because they cannot 

include ‘lost occurrences’, where species once existed but were removed by humans 

before any records of these occurrences were made. For example, New Zealand was 

almost entirely forested before human settlement (McGlone 1989) and now the driest, 

most fertile regions are largely deforested and many species are now rare or absent. The 

sensitivity of SDMs to including ‘lost occurrences’ has rarely been evaluated. Palaeo-

ecological distribution data from an appropriate time period (e.g. in New Zealand, 1200–

1900 AD, corresponding to before and after deforestation but climate invariant) could be 

incorporated into SDMs to address this issue. These data could include samples from 

sediment cores, including ancient DNA, pollen and macrofossils (e.g. leaves, fruits, bark).  

A comprehensive approach to SDMs would incorporate competitive interactions, dispersal, 

demographic rates, and abrupt distributional boundaries, using both climate and soil 

variables as direct predictors and indirect modulators of competitive interactions and 

demography. Incorporation of palaeo-ecological data could be appropriate to account for 

lost occurrences.  

The issue, however, is that some of these classes of data currently don’t exist at the scales 

and resolution at which modelling is desired (e.g. soil fertility), and SDM approaches that 

incorporate these factors are still being developed. For example, classical SDM techniques 

are commonly criticised for their failure to consider these interactions when making 

predictions (Ferrier & Guisan 2006). In recent years, however, substantial progress has 

been made in the field of ‘joint species distribution modelling’, which simultaneously 

includes both species- and community-level components (e.g. Warton et al. 2015; 

Ovaskainen et al. 2016), but these approaches are still in their infancy. Joint SDMs remain 

an area of active research, and their ability to capture both environmental and community 

processes make them an important factor in the future development of SDMs.  

In this report we restrict our evaluation of SDMs to static distribution models. These 

models are unable to distinguish between the short- and long-term responses of a species 

to a stochastically changing environment (e.g. seasonal recolonisation of a floodplain after 
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flooding). Although factors reflecting disturbance, human influence or successional 

dynamics can sometimes be included as predictors, this is often achieved with increased 

difficulty. Alternatives include more mechanistic, dynamic simulation models, but since 

these approaches require intensive knowledge of the species involved, they are generally 

restricted to a small subset of well-studied species (Guisan & Zimmermann 2000). 

3.1.4 SDM approaches 

Many SDM approaches have been developed over the last 20-plus years since the advent 

of modern modelling and mapping of species distributions (Elith & Leathwick 2009). When 

fitting SDMs it is recommended that the selection of an appropriate method not depend 

on statistical considerations and the availability of, or familiarisation with, particular 

techniques alone. For example, the most appropriate model may depend on the response 

variable (e.g. percentage cover, individual counts or presence/absence of a species). Some 

models are designed to reflect the theoretical shape and nature of a species’ response to 

the environment, and there is often a trade-off between optimising accuracy and 

generality. For SDMs, optimising generality is often achieved by selecting appropriate 

predictor variables performing robust model selection. Table 1 summarises some common 

SDM approaches. 

Table 1. Some commonly used approaches for SDMs 

Name Description Reference 

Presence-only 

BIOCLIM First developed by Nix (1986), BIOCLIM is often referred to as 

the first true SDM. It predicts distributions using the minimum 

and maximum values of environmental variables encountered 

across a species’ measured range. The main drawback of this 

simple model is the imposed shapes, which can be the cause of 

a non-justified exclusion or inclusion of a geographical point 

from the predicted distribution. Also, BIOCLIM models can only 

accept continuous predictor variables and do not consider 

interactions. 

Nix 1986; Busby 1991; 

history and use 

reviewed by Booth et 

al. 2014  

DOMAIN An early SDM technique, DOMAIN is based on a point-to-point 

similarity metric between a site of interest and the nearest 

presence record in environmental space. One drawback is that 

the metrics used do not account for correlation between 

covariates. Most suitable when there is a limited number of 

records available. 

Carpenter et al. 1993 

Presence−background 

MaxEnt (Maximum 

entropy) 

This is reportedly the most widely utilised method and software 

for SDMs, with a relatively user-friendly interface, and it has 

been shown to out-perform many other methods (Elith et al. 

2006). The model minimises the relative entropy between two 

probability densities (one estimated from the presence data 

and one from the landscape [pseudo-absences]) defined in the 

space of supplied covariates (predictor variables). Uses a log-

linear model. 

Phillips et al. 2006; 

Phillips & Dudík 2008; 

Elith et al. 2011; 

Merow et al. 2013 
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Name Description Reference 

MaxLike This method is similar to the more widely used MaxEnt, but is 

capable of estimating absolute occurrence probability (the 

probability that a species is present in a grid cell). Uses a logit-

linear model. 

Royle et al. 2012; 

Merow & Silander 

2014 

Regression 

methods (e.g. 

generalised linear 

models, generalised 

additive models) 

Regression models such as generalised linear models (GLMs) 

and generalised additive models (GAMs) are frequently used for 

SDMs, in part due to their strong foundation and use in 

modelling ecological relationships. Regression methods have a 

response (species data) and one or more predictor (usually 

environmental) variables. Because of their ability to model non-

linear relationships using piecewise splines, GAMs are capable 

of modelling more complicated ecological responses than 

GLMs. However, less-flexible, non-linear relationships can be 

specified in GLMs through the inclusion of polynomial terms. 

These models can also be used when absence data are available 

(substituting for background data/pseudo-absences). 

Various methods are 

discussed in Elith et 

al. 2006 

Spatial point-

process models 

(SPP; e.g. Poisson 

point process 

models) 

The development of the SPP approach was motivated by 

perceived issues with the pseudo-absence approach to 

methods such as MaxEnt. Since SPP models use point locations 

in continuous environmental space (rather than at the pixel 

scale, as in MaxEnt), this approach is well suited to presence-

only data commonly associated with museum/herbarium 

records. SPP models are very closely related to MaxEnt and 

some regression approaches, the advantage being that they are 

considered more transparent in terms of assumptions and 

selection of background points through the use of objectively 

selected ‘quadrature points’ rather than more traditional 

pseudo-absences. 

Warton & Shepherd 

2010; Renner & 

Warton 2013 

Non Parametric 

Probabilistic 

Ecological Niche 

(NPPEN) 

This is derived from a test to compare the ecological niche of 

two species and is based on a simplification of the Multiple 

Response Permutation Procedures (MRPP) using the 

Generalised Mahalanobis distance. MRPP tests whether two 

groups of observations in a multivariate space are significantly 

separated. In its adaptation in NPPEN, the test is whether one 

observation of a taxon belongs to a group of reference 

observations for that taxon. 

Beaugrand et al. 2011 

ENFA (Ecological 

Niche Factor 

Analysis) 

Based on Principal Component Analysis, ENFA summarises 

multiple environmental variables into a few uncorrelated factors 

that comprise most of the relevant information. ENFA is 

quantified through indices of marginality (the direction in which 

the species’ niche differs from the ‘global’ environment) and 

specialisation (describes how restricted a species’ niche is).    

Hirzel et al. 2002 

GARP (Genetic 

Algorithm for Rule 

Set Production) 

GARP is a machine learning approach where a genetic 

algorithm is implemented to identify associations between 

occurrences and environment. It uses an iterative process of 

random rule selection and development to produce a set of 

rules summarising the species’ ecological niche. Rules are 

selected according to their effectiveness (compared with 

random), and this process is continued for a set number of 

iterations (Anderson et al. 2009 ran 2,500 iterations), or until 

convergence. The final model is a set of if-then statements, 

which determines whether a species is likely to be present in a 

particular cell. 

Stockwell & Noble 

1992; Stockwell & 

Peters 1999; applied 

in Anderson et al. 

2009 
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Name Description Reference 

Presence−Absence 

GRM (generalised 

regression models) 

GRM methods are commonly chosen for SDM studies because 

they can incorporate additive combinations of environmental 

predictors, and have the flexibility to fit non-linear relationships. 

Generalised additive models (GAMs) provide the greatest 

flexibility in terms of fitting complicated non-linear responses. 

Polynomial transformations can also be applied to generalised 

linear models (GLMs). GRMs can be extended to account for 

zero-inflated data sets, structured or nested sampling designs, 

or spatially auto-correlated data. 

GLMs: McCullagh & 

Nelder 1983; Guisan 

et al. 2002; Wintle et 

al. 2005 

GAMs: Hastie & 

Tibshirani 1987; Yee 

& Mitchell 1991; 

Guisan et al. 2002 

ANN (Artificial 

Neural Networks) 

ANNs are machine learning techniques, first developed as 

models for the human brain and mostly used for the 

classification of remotely sensed data (Civco 1993; German & 

Gahegan 1996). They work by deriving composite variables 

called ‘hidden layers’, which are weighted, linear combinations 

of the predictors to model species occurrences. ANNs are often 

used in image classification and vegetation mapping (see 

Linderman et al. 2004), with less SDM application. Although the 

accuracy of ANNs can approach that of more established 

techniques, the steep learning curve associated with ANNs 

prevent their wider application. 

Olden et al. 2008; 

Franklin 2009 

Boosted Regression 

Trees (BRT) 

Decision trees are machine learning techniques that work by 

dividing data into subgroups using predictor variables, resulting 

in a decision tree of binary decision rules that can be used to 

classify observations and make predictions. ‘Boosting’ is a form 

of model averaging that works by repeatedly sampling the data 

to develop trees using a withheld sample to evaluate the 

model. ‘Problem’ observations (those frequently misclassified 

by previous models) have a higher probability of being 

selected, aiding in the refinement of the model. Prediction is 

based on an average of all trees built in the model. 

Elith et al. 2008; 

Franklin 2009 

Random Forests Random Forests is similar to Boosted Regression Trees. It works 

by building and averaging many (typically 500−2,000) 

uncorrelated trees, but each split is developed with a random 

subset of the predictor variables. This method avoids overfitting 

the data, but due to the large number of trees, results can be 

difficult to interpret. 

Prasad et al. 2006; 

Franklin 2009 

MDA (Mixture 

Discriminant 

Analysis) 

MDA is a classification SDM method based on mixed models. It 

assumes that the class of each environmental variable follows a 

normal distribution, and that each class can be split and 

modelled as mixtures of subclasses (each also with a normal 

distribution). The mixture of these normal distributions is used 

to generate a density estimation of each class, indicating a 

species presence or absence while accounting for multi-modal 

distributions. 

Hastie et al. 1994; 

Hastie & Tibshirani 

1996 
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Name Description Reference 

MARS (Multivariate 

Adaptive 

Regression Splines) 

& MARS-INT 

(Multivariate 

Adaptive 

Regression Splines 

with Interactions) 

MARS is a non-linear regression method, somewhat related to 

GAMs because it uses piecewise splines (Leathwick et al. 2006; 

Franklin 2009). This technique combines the strengths of 

regression trees and spline fitting by replacing the decision 

steps of regression trees with piecewise linear basis functions. 

MARS can model complex relationships between multiple 

predictors and a response variable in a computationally efficient 

manner (unlike GAMs, which can be slow with large data sets). 

Interactions among predictions (MARS-INT) are also considered 

between the sub-regions of each basis function, rather than 

globally (as in most models). 

Hastie et al. 2001; 

Muñoz & Felicísimo 

2004 

iCAR (Bayesian 

intrinsic conditional 

autoregressive 

model) 

Intrinsic conditional autoregressive (iCAR) models are network-

based models designed to model spatially auto-correlated data 

based on neighbourhood relationships. These models make use 

of a spatial weights matrix to quantify the relative effects the 

spatial dependencies have on the data.  

Besag 1974; for a 

recent discussion see 

Ver Hoef et al. 2018 

SVMs (Support 

Vector Machines) 

Recently developed and applied to SDM, SVMs are typically 

designed for two-class problems where a hyperplane separates 

two classes (such as species presences and absences) in 

predictor space. One-class SVMs can also be effective for 

presence-only species observations (Drake et al. 2006).  

Guo et al. 2005; 

Franklin 2009 

Occupancy−detection 

False positive 

occupancy models 

These models incorporate information about the degree of 

certainty in detection and allow data from multiple 

survey/detection methods to be modelled together. 

Miller et al. 2011 

O-D (occupancy 

detection) 

O-D models are an extension of logistic regression that account 

for imperfect detection. They are an SDM that separates 

occupancy, a biological process, from detection, an 

observational process, to account for false negatives.   

MacKenzie et al. 2002 

 

The modelling process itself consists of two important stages. Model calibration includes 

deciding which set of explanatory variables should be included in the model, transforming 

explanatory variables as required, parameter estimation, measuring model fit, and 

selecting the best model given the data. Selecting the best model may be based on 

comparing the fit of competing models, evaluating the influence of outliers and leverage 

points and, for some model types, using processes such as pruning and cross-validation. It 

is also recommended that consideration be given to detecting and correcting for potential 

sampling bias in species record data, especially when using presence-only data (El-Gabbas 

& Dormann 2018). 

The second stage is prediction of the potential distribution of the taxon within the 

modelled area. This stage is typically implemented in a GIS environment, but can also be 

generated in programs such as R (R Core Team 2016) using spatially complete spatial 

layers of the explanatory variables used in the model. Although rarely done, mapping of 

the uncertainty of predictions is also useful (Rocchini et al. 2011; Stoklosa et al. 2015).  

While SDMs were originally used for predicting within sampled regions, predictions into 

new times and locations is becoming a frequent application. SDMs are poorly suited to 

these applications due to their reliance on correlative statistics with little 
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mechanistic/causal relationships, but researchers persist with their application into 

unsampled environments and climates due to a lack of viable alternatives (Elith & Franklin 

2013). Common applications include research into the impacts of climate change and 

invasion, and prediction into past climates.  

3.1.5 Model evaluation 

Model evaluation is the process of measuring the adequacy of model predictions 

compared with field observations. Other terms commonly used to describe this step are 

‘validation’ and ‘accuracy assessment’. Prediction errors in SDMs can result from model 

specification errors (incorrect predictor variables or parameters) or data errors (missing 

predictors). Data errors are usually driven by an incomplete knowledge of the 

environmental factors that drive a species’ distribution, or lack of suitable spatial data that 

represent those factors.  

While most statistical models used to test hypotheses use R2 and p-values to evaluate 

model fit, typically these are not appropriate for SDM methods. Rather, modellers usually 

employ a range of cross-validation techniques using data resampling (Elith & Leathwick 

2009). Commonly used approaches are cross-validation and Jack-knife or bootstrapping, 

but there is little consensus on which is best. These approaches typically involve creating a 

model with a ‘training’ data set and testing its predictive accuracy across a withheld 

‘evaluation’ data set. This is usually repeated across multiple iterations. Data sets from 

different, independent sources can be used for calibration and evaluation, but this is 

uncommon because it is usually desirable to use as many observations as possible during 

the calibration stage of the modelling process (but see Franklin 2002; Elith et al. 2006).  

Model evaluation can be measured using threshold-dependent or threshold-independent 

measures of accuracy. Threshold-dependent measures, such as sensitivity, specificity and 

kappa, are useful for categorical SDM predictions, where a species is predicted as a binary 

present or not present. However, many SDMs incorporate continuous probability maps of 

species occurrence, from which a threshold can be applied to produce binary maps. 

Threshold-independent measures of accuracy have recently become popular, not only to 

evaluate SDMs but also to compare among SDM methods, candidate predictors, etc. 

Frequently used threshold-independent measures of accuracy include area under the 

receiver operator curve (AUC) and correlation coefficients.  

3.1.6 Model credibility and application 

Judging an SDM’s credibility is a subjective exercise and relies heavily on the intended 

application of the model (Guisan & Zimmermann 2000). For example, if the prime focus is 

to explore species–environment relationships, a model may be judged as ‘good’ when its 

predictions closely match the observed data. However, many studies require accurate 

predictions of species ranges at high resolutions. Credibility can be based on test statistics 

(i.e. Kappa; Monserud & Leemans 1992) and should represent a level that is acceptable to 

the intended user of the output. 

SDM outputs are inherently probabilistic, and this needs to be considered in their 

application (Guisan & Zimmermann 2000). Given the correlative nature of SDMs, extreme 
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care must be taken when extrapolating into environmental space that has not been 

sampled; i.e. novel combinations of predictors that did not occur in the data from which 

the model was derived. Such extrapolation commonly occurs during spatial prediction 

across regions, or when making predictions into future climates.  

While process-based, mechanistic (or semi-mechanistic) models (e.g. Kearney & Porter 

2009) may be considered preferable under these circumstances, these are usually only 

applied to well-studied species and, in the case of forests, to idealised stands restricted to 

a single species, and they require detailed, often species-specific measurements of 

physiological function. Unfortunately, these data are rarely available, and indirect, 

correlative approaches, such as SDM, remain one of the few feasible approaches for 

extrapolating distributions across time and space. These limitations must be considered 

when assessing SDM outputs. 

3.2 Assessment of turn-key SDM approaches 

A summary of the results from our evaluation of turn-key SDM applications is presented in 

Table 2. 
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Table 2. Comparison of four semi-automated turn-key species distribution modelling applications 

 Atlas of Living Australia (ALA) Biodiversity and Climate Change Virtual 

Laboratory (BCCVL) 

Wallace Lifemapper1
 

1. SDM approaches MaxEnt 17 different algorithms BIOCLIM and MaxEnt ANN, BIOCLIM, 

GARP, SVMs 

2. Integration with data 

networks 

Multiple Australian and NZ custodians 

(universities, CRIs, herbariums, CSIRIO) 

ALA, GBIF and Aekos (Australian vegetation 

plot data set) 

GBIF, VertNet (vertebrate occurrence 

records) and BISON (North American 

occurrence data) 

GBIF 

3. Allows incorporation of 

user’s data 

Can import species records but not 

environmental correlates 

Yes: both species occurrence data and spatial 

layers can be uploaded. 

Yes: both species occurrence data and 

spatial layers can be uploaded. 

Unable to assess. 

4. Ability to assess model 

fit 

Export includes Jack-knife for assessment 

of environmental covariate importance / 

contribution to model, and also AUC 

values/plots. 

Depends on the SDM algorithm, but AUC 

values/plots, variable importance 

comparisons, and various error rate plots are 

available for most models. 

AUC values/plots are produced for 

MaxEnt. At present there is no ability to 

assess the importance of different 

covariates. 

Unable to assess. 

5. Assessment of outliers, 

etc., in primary data 

Not formally, but partial dependence plots 

show responses of species to 

environmental variables. 

Not formally. Not formally. Unable to assess. 

6. Ability to compare 

across SDM outputs 

Not formally, but multiple outputs can be 

viewed simultaneously in the online 

interface and compared visually. 

SDM maps and outputs, including response 

curves, can be plotted side by side (Figure 

2b) and ensembles can be generated (Figure 

2d). 

Not currently. Unable to assess. 

7. Ability to assess impact 

of data bias 

Nil Nil Not currently. Unable to assess. 

8. Reproducibility All model outputs are provided in a ZIP 

folder, including MaxEnt parameters, a 

shapefile and partial dependence plots. No 

R code (or similar) for publication. 

Model outputs and parameters are stored in 

the user’s online account and can be 

exported, along with the R code used to 

generate the BCCVL results. 

An annotated and executable R 

Markdown file is produced by Wallace, 

enabling the user to re-run analyses. All 

outputs must be downloaded because 

there is no cloud storage for Wallace  

Unable to assess. 

9. Spatial extent Heavily focussed on Australia, with most 

spatial layers only available for this region 

(climate layers available globally). Some 

point records available for other regions, 

including NZ. 

Through access to GBIF, the BCCVL 

effectively has a global extent. Most spatial 

layers, excluding climate, are restricted to 

Australia but additional point records and 

spatial data can be uploaded by the user. 

Global.  Global. 

1
Lifemapper was not functional during testing. 
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3.2.1 The Atlas of Living Australia (ALA) 

The ALA is the Australian node of the Global Biodiversity Infrastructure Facility (GBIF) and is 

Australia’s national biodiversity database, providing free access to millions of occurrence 

records and hundreds of environmental layers. The ALA has a user-friendly, stable spatial 

interface (Figure 1a), in which point records can be displayed for multiple species and SDMs 

can be performed.  

Unfortunately, although the ALA contains records of species occurrence outside Australia 

(e.g. it contains records of New Zealand plant species mobilised by the Australasian Virtual 

Herbarium network), most environmental layers are only available for Australian boundaries, 

and users cannot manually upload their own, so, depending on the layers selected, 

predictions are often restricted to Australia. Layers with wider coverage include the 

WorldClim series of climate grids (Hijmans et al. 2005), enabling SDMs to be run outside 

Australia (including New Zealand), but these will be based solely on temperature and 

precipitation, with no consideration of solar radiation or edaphic variables. While 

disappointing, this is not surprising for an Australian-developed and -funded database. 

The ALA includes only one SDM method, MaxEnt, which can be run directly from the spatial 

portal (Figure 1a). While there are many parameters that can be adjusted in MaxEnt (see Elith 

et al. 2011 for a detailed guide to MaxEnt), these cannot be adjusted within the ALA interface, 

with defaults used for most parameters. The aspects that can be controlled by the user within 

the ALA are limited and include the following. 

1 The spatial area of interest. When running an SDM there are several different ways the 

user can define the area of interest within which the occurrence points will be considered 

and the species’ range will be predicted. This is called the ‘Active Area’ and can be 

defined as the displayed map window extent, the Australian region, global, or within a 

user-defined area of interest. This can be drawn manually as a polygon directly in the 

spatial portal, uploaded as a shape file, defined as a radius surrounding a point or 

address, or selected from a mapped polygonal layer. 

2 Included species point records. The records contained in the ALA have been obtained 

from a range of sources and there can be errors relating to taxonomy and coordinate 

uncertainty, and some records may be out of date. Species records used as inputs for 

SDMs in the ALA can be filtered by date or coordinate uncertainty, though this requires 

exporting the ALA data, manual filtering and re-importing. Points can also be filtered by 

location using a polygon that can be defined directly in the spatial portal (or uploaded as 

a shape file), and further filtered automatically during the SDM fitting process by 

excluding ‘spatially suspect’ records (records that fail the ALA’s spatial tests; i.e. terrestrial 

species in the ocean, coordinates given as 0, 0).  

3 Included environmental layers. The ALA includes around 300 environmental layers that 

can be included in SDMs, though most of these are restricted to Australia. While 

selecting environmental layers to use as covariates in the SDM, they can be viewed 

directly in the portal and a ‘traffic light’ colour system is used to indicate the degree of 

correlation between selected variables. 

4 Select SDM verification options. Before running the SDM, there are three optional 

MaxEnt parameters that can be selected by the user to assess the fit of the model. A 
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Jack-knife can be included that examines the significance of the environmental 

predictors individually. The user has the option to create response curves, including a 

chart for each layer, which can be used to evaluate how well the model captures the 

response of the species to that variable (i.e. Figure 1c). Finally, the user can define the 

percentage of occurrences that are withheld to test the model. 

Once the model specifications are selected, the SDM is run on ALA servers and the results are 

automatically downloaded in a zip file and displayed as a map in the ALA spatial portal. The 

zip file includes metadata for the model, including the MaxEnt parameters used, model 

verification results (including AUC statistics), a thumbnail prediction map (Figure 1b) and 

shape file, covariate response curves (Figure 1c), and an analysis of covariate contributions 

(Jack-knife results). Also included is a list of species occurrence locations included in the 

model and a unique identifier that can be used to restore the model, even in a later session. 

A scatterplot between an SDM-generated layer and an environmental covariate included in 

the SDM can be generated to visualise the relationship between that covariate and the 

predicted probability of occurrence at each of the locations where the species was observed 

(Figure 1d). Points on the scatterplot can also be selected directly to identify the spatial 

location of outliers and points of interest in the spatial portal. 
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Figure 1. The Atlas of Living Australia (ALA) is the Australian node of GBIF and contains millions 

of point records and hundreds of spatial layers that can be used for SDM.  

(a) The ALA program has a ‘spatial portal’ where point records can be displayed and SDMs are 

processed. (b) An example SDM output from an ALA prediction showing the predicted distribution of 

mānuka (Leptospermum scoparium) across Australia using MaxEnt. (c) Fitted functions of the five 

environmental variables included in the model. (d) The ALA also has a scatterplot function, which can 

be used to display values of an environmental variable and the probability of occurrence generated 

from an SDM output to visualise a species’ response. 

3.2.2 The Biodiversity and Climate Change Virtual Laboratory (BCCVL) 

The BCCVL is a cloud-based research facility developed in Australia with the goal of assisting 

researchers to access data and high-performance computational resources through a user-

friendly graphical user interface that accesses the statistical program R (Hallgren et al. 2016). 

The BCCVL provides access to species point occurrence records from the ALA, GBIF and 

Aekos (one of Australia’s vegetation plot databases) and contains several vegetation, climate, 

soil and geology layers. Access to species point records held by ALA and GBIF mean that 

records are available at a global scale, but most environmental layers are restricted to 

Australia. Climate variables from the WorldClim series (Hijmans et al. 2005) are available for 

analyses outside Australia, and users can also upload their own climate and environmental 
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layers. There are options to automatically scale layers to consistent resolutions while 

parameterising the SDM. 

At present the BCCVL has the functionality to run 17 different SDM algorithms, including 

MaxEnt, Artificial Neural Networks, and several machine learning and regression techniques 

including GLMs, GAMs, Random Forests and Boosted Regression Trees (see Hallgren et al. 

2016 for a full list). There is also a comprehensive set of training videos available online 

covering the conceptual background of SDMs, and a tutorial explaining how they can be run 

in the BCCVL. As with the ALA, the user navigates through a set of menus where input data 

(species and environmental, including user-uploaded) are selected to be included in the 

model(s) (Figure 2a). The user also has the option to include true absence data; otherwise 

background, or pseudo-absence, data are automatically generated with user-specified 

constraints (i.e. presence−absence ratio, location selection strategy, etc.).  

There is a range of methods available to restrict the geographical range of the analyses, 

including convex hull of occurrence points, or using polygons either defined/drawn manually 

directly in the BCCVL visualiser or uploaded as a shape file. The user has the option of 

selecting any number/combination of the 17 SDM algorithms, and these are run concurrently. 

Each SDM algorithm is configurable: for example, with MaxEnt the user can select the 

number of background points and, unlike in the ALA, which also uses this method, can select 

the predictor variable features permitted for the model. Defaults are automatically selected 

when values are not set by the user. 

Once the models are parameterised, the SDMs are run on a cloud-based Australian 

supercomputing facility called the Australian National eResearch Collaboration Tools and 

Research Project (NeCTAR). Since the models are run on an external cloud-based network, 

the user can log off their personal machine after initiation with the outputs saved to the 

user’s BCCVL profile/login. The outputs and model verification statistics from the selected 

SDM algorithms can be compared within the BCCVL interface (Figure 2b,c) and the R code 

used to generate results can be exported. Additional features of BCCVL include the 

generation of an ensemble SDM from multiple algorithms (Figure 2d) and future projections 

of distribution under climate change.  
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Figure 2. The BCCVL provides access to a large collection of species occurrence records and 

spatial layers, as well as 17 different SDM tools.  

All panels of this figure show point records and predictions for mānuka (Leptospermum scoparium). (a) 

Species observations can be viewed directly within the online BCCVL interface/visualiser (in this case, 

mānuka, Leptospermum scoparium). (b) After running a set of  SDM analyses, outputs from different 

algorithms can be viewed side by side in the BCCVL visualiser for comparison. (c) The user can view 

projection plots showing densities of occurrence across latitude and longitude. (d) Ensembles can be 

generated to provide a consensus among multiple SDM algorithms; here we show the mean predicted 

probability of occurrence for the six algorithms shown in (b), but additional measures (minimum, 

maximum, variance, various percentiles) can also be generated. 

3.2.3 Wallace 

Wallace is a recently developed, open-source, R-based platform for reproducible modelling 

of species distributions (Kass et al. 2018a). It was developed to combine the positive 

attributes of traditional, command-line interfaces (such as R), which are customisable but 

complex, and graphical user interfaces, which are usually less flexible. The package is 

available on both CRAN (Kass et al. 2018b) and Github, and uses a graphical user interface, 

written using the web app development R package shiny (Chang et al. 2017). Wallace 
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provides access to species point records from GBIF, VertNet (vertebrate occurrence records) 

and BISON (Biodiversity Information Serving Our Nation: North American occurrence data for 

species of most taxonomic groups), and spatial data from the WorldClim series at varying 

resolutions (Hijmans et al. 2005). No habitat, soil and geology layers are provided, but these 

may be supplied by the user.  

Unlike the other turn-key approaches evaluated here, Wallace runs directly on the user’s PC 

rather than on a cloud-based server. This is an advantage if the user is running SDMs using 

spatial data saved on their local PC because it avoids uploading large spatial files over an 

internet connection. However, this is a disadvantage when using Wallace-provided spatial 

layers because they must be first downloaded to the user’s PC (Wallace facilitates this but it 

can take time depending on the speed of the internet connection).  

At present, Wallace includes two SDM approaches, BIOCLIM and MaxEnt, but the modular 

nature of the program will allow it to be expanded on and contributed to by the community 

(Kass et al. 2018a). Unlike BCCVL, different SDM approaches cannot be run concurrently and 

there is no functionality to run any ensemble analyses. To initiate the Wallace graphical user 

interface, the user must run two lines of code in R (following installation of the package): (1) 

‘library(wallace)’ to load the package, and (2) ‘run_wallace()’ to launch the 

application in the user’s default web browser. While the user interacts with Wallace in a web 

browser, the data processing is completed by a ‘background’ R-session on the user’s PC.  

The graphical interface is intuitive and straightforward (Figure 3a), with a similar layout to 

BCCVL. It is split into a series of nine components, each with one or more modules. All 

modules, associated R packages and authors are documented in the interface, and 

referenced information is included to provide the user with background information and 

troubleshooting tips. The nine components are as follows (Kass et al. 2018a). 

1 Obtain occurrence data. The user can query a database or upload their own data. 

Unfortunately, when querying a database the user can only extract a maximum of 500 

occurrences, and users can only query one of the three databases at a time. Records are 

first filtered to remove those duplicates and those without coordinates and then plotted 

on a map. 

2 Process occurrence data. The user can choose which point records to include in their 

analysis by removing occurrences outside a user-defined polygon on a map, by ID, or by 

using a spatial thin where occurrences are systematically removed to decrease their 

density. 

3 Obtain environmental data. Wallace provides access to WorldClim climate layers at 

various resolutions, and also allows the user to input layers. 

4 Process Environmental data. The user specifies a background extent (study area) to clip 

predictor layers and draw background samples (if required). The user can upload a shape 

file, or choose a background extent using a bounding box (Figure 3a), minimum convex 

polygon or point buffers from the occurrence data. A user-defined number of 

background samples can also be generated at this stage. 

5 Partition occurrence data. The user can choose how to partition occurrence points to 

evaluate the model. Points are sorted, spatially or non-spatially, into a user-selected 

number of groups used for k-fold cross-validation. 



 

- 20 - 

6 Build and evaluate niche model. The user can select from either BIOCLIM or MaxEnt. 

For MaxEnt, feature classes can be selected to define the flexibility of the model response 

and the regularisation multiplier can be selected to penalise complexity. The user does 

not have the capacity to alter any other MaxEnt parameters. 

7 Visualise model results. The user can map spatial predictions generated with the SDM 

(Figure 3b), model evaluation plots and response curves (Figure 3c). These can also be 

downloaded to the user’s PC. 

8 Project model. The user can project models under alternative climate scenarios, or 

across new areas.  

9 Session code. One of the main advantages of Wallace is its reproducibility. The user can 

download a fully executable R Markdown file that can be used to rerun analyses, share 

results, or provide supplementary information for a research output. 

 

Figure 3. Wallace is an open source R package for generating SDMs through a graphical user 

interface.  

All panels in this figure show point records and predictions for mānuka (Leptospermum scoparium). (a) 

The Wallace interface is triggered in a web browser after executing two lines of code in the program R 

(following the installation of relevant packages). All analyses run on the user’s PC using their own data, 

or data available within the program. Displayed here are point records for mānuka extracted from GBIF 

and the user-defined study region (in grey). (b) MaxEnt output − while output maps from SDMs can be 

visualised directly within Wallace, higher-quality maps can be produced using GIS software. (c) Fitted 

functions of the five environmental variables included in the model. 
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3.2.4 Lifemapper 

Unfortunately Lifemapper was not operational at the time of evaluation. While the website 

could be accessed, their modelling component was not operational. All information in Table 2 

was sourced from parts of their website that were operational. 

4 Discussion 

Following substantial developments in analytical techniques and computing power, the 

complexity of ecological analyses has greatly increased in recent times (Bolker 2008; Gimenez 

et al. 2014). To take advantage of these developments, most statistical and modelling 

approaches are designed and first implemented using command line interfaces (e.g. Python 

and R), sometimes later being made available with a graphical user interface (GUI). Command 

line interfaces provide great flexibility and a precise record of what has been done, but are 

often difficult to interpret and tailor to specific data sets and analyses (Mislan et al. 2016). 

Conversely, GUIs are easier to navigate and extend the accessibility of the approach to many 

more users, but concessions are often made in terms of the availability of software that 

includes GUIs, customisability and reproducibility.  

Species distribution modelling is a growing field in ecology. These models are widely used 

and often form the basis for important policy and conservation decisions. Due to their 

popularity, many SDM techniques have been made available with GUIs (sometimes referred 

to as ‘turn-key’ approaches) providing access to quite complex models by a much greater 

audience. These turn-key approaches are often referred to as ‘black box’ software, so named 

because many (or most) of the myriad adjustable SDM settings are concealed or inaccessible 

to the user. This is usually a deliberate decision, designed to increase the accessibility of the 

approach, but it can lead to users voluntarily or involuntarily ignoring important model 

parameterisations (Ahmed et al. 2015). What remains in question is the importance of the 

trade off between accessibility, customisability and reproducibility. 

4.1 The realities of ecological modelling 

Ecological models are mathematical objects intended to represent real-world phenomena. 

However, the world is fundamentally complex and it is probably impossible to capture this in 

any model (Evans 2012). In an attempt to make their models general, realistic and precise, 

modellers need to make decisions about which elements to include in their models and 

which to disregard. This almost always requires not only specialist modelling skills but also a 

detailed knowledge of the study species and its responses to the environment (Guisan et al. 

2013). Also, ecological models are imperfect: an ecological model can only be as good as its 

input data. Uncertainty in model fit and its potential impact on predictions must be critically 

assessed and disclosed, when presented. The scarcity of these specialist skills has driven an 

increase in the availability of user-friendly web interfaces, such as the turn-key approaches 

evaluated here, but there is concern over the ability of inexperienced users and non-experts 

to adequately explore data sets and adjust model settings (where available) (Guisan et al. 

2013). 
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4.2 Assessment of turn-key systems 

In this report we evaluated four turn-key systems designed to provide access to SDM 

approaches by non-specialists: Lifemapper, the Atlas of Living Australia (ALA), the Biodiversity 

and Climate Change Virtual Laboratory (BCCVL), and Wallace. Aside from Lifemapper, which 

was not operational at the time of evaluation, most were straightforward to use and provided 

access to popular SDM approaches, and exporting results and spatial predictions was 

straightforward. Wallace was slightly more complicated than the ALA and BCCVL because it 

requires an active R session and two lines of code to initiate, but is still likely to be accessible 

to most researchers.  

Some systems provided access to more SDM algorithms than others. The BCCVL provided 

access to 17 different algorithms, whereas the ALA only provided access to one algorithm 

(MaxEnt). The recently released Wallace only provided access to two algorithms (BIOCLIM 

and MaxEnt), but the developers have provided the architecture for the community to add 

more modules in the future (Kass et al. 2018a).  

All three systems that were successfully evaluated provided access to the most popular SDM 

approach, MaxEnt, which also has its own GUI. However, its ‘black-box’ nature leaves many 

applications of it open to criticism (Merow et al. 2013; Ahmed et al. 2015). The level of 

customisability varied among turn-key systems. For example, many important settings such 

as the selection of feature shapes (which control the complexity of fitted 

species−environment relationships) could not be defined in the ALA (despite a strong 

recommendation that these be selected prior to model building: Elith et al. 2011; Merow et al. 

2013), but could be defined in the BCCVL and Wallace. 

All systems evaluated here had some capacity to download from public occurrence data 

networks, and species occurrence and spatial data could be directly uploaded by the user in 

all cases except for the ALA, where there is currently no option to upload spatial data. The 

ability for the user to upload their own data is important because it not only allows use of the 

tool across a range of countries and continents, but also allows the user to provide data most 

pertinent to their target species.  

All turn-key systems evaluated included an ability to assess model fit, including fitted 

functions of environmental variables, and area under the receiver-operator curve (AUC) 

statistics, and sometimes they included a Jack-knife for assessing each environmental 

covariate’s importance to the model (the ALA only). However, all outputs required model 

assessment skills and knowledge of the target species’ ecology. The assessment of outliers 

from the primary data and the ability to assess the impact of data bias were limited across all 

systems.  

The issue of reproducibility was also addressed in two systems: the BCCVL and Wallace. Both 

facilitated export of R code used to generate the results, enabling the user to re-run analyses 

and include the supplementary information of a research output. There is no option to export 

R-script in the ALA. 

While it was unfortunate that Lifemapper was not operational at the time of this evaluation, it 

also highlighted another potential flaw with online turn-key modelling approaches such as 

the ALA and BCCVL: they are dependent on the web-hosting services of organisations that 
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may not reliably maintain them in the long term. This is likely to be especially relevant for 

organisations that rely on funding cycles to fund required web domains and servers, and to 

employ IT professionals with the responsibility for maintaining and updating the resources in 

perpetuity. Since Wallace is available as an open-source R-package and associated Shiny-

based GUI, it may prove more reliable, especially if it becomes a popular resource that is 

expanded upon by the scientific community. 

4.3 Development of a turn-key SDM system at MWLR 

In 2015 a survey of MWLR staff on the use of SDM was carried out. The aim was to elicit 

requirements for a potential SDM platform to be established within MWLR. Data from 19 

responses showed that roughly 30% of those surveyed had carried out some form of SDM 

work. The results also showed that these staff generally felt competent in the use of SDMs 

and understood the advantages and limitations of the approach. Issues frequently 

encountered were most often related to model selection, access to both species and 

environmental data, model evaluation, and computer performance. Most respondents (69%) 

ran their SDMs in R, indicating that a high proportion are comfortable with a command-line 

approach to ecological modelling.  

From this survey it was concluded that the development of turn-key platforms was not 

required to meet the needs of MWLR staff. Rather, a number of needs were identified relating 

to: data/metadata access, formatting, standardisation, validation, and reproducible data-

pipelining. Another need identified was the development of flexible solutions that can be 

adopted and tailored in familiar data-processing environments, such as R, to facilitate robust, 

documented and reproducible analyses. 

The findings of this report support those of the 2015 survey in showing there are inherent 

problems with the turn-key SDM platform approach. While there have been some advances 

since their 2013 review, Guisan et al. (2013) found that key components of the model 

building process − such as evaluation of model fit and performance, uncertainty assessment 

and inspection of response curves − were not available in many turn-key SDM applications. 

They stated that they cannot advocate the use of potentially over-simplified tools, such as 

‘black box’, turn-key modelling software, to support conservation decisions, and called for a 

wider recognition that SDMs should be developed by experts with intimate knowledge of the 

target species and statistical approaches.  

Given the results of the 2015 MWLR survey, it is unlikely that the development of a turn-key 

approach will be of significant benefit to MWLR staff. While computer speed and data access 

issues could be addressed through running models on a centralised server, flexibility in 

model selection and evaluation − important issues identified in the survey − are constraints 

across all the turn-key systems evaluated. 

4.4 Alternatives to turn-key SDM systems 

There has been a strong push among ecologists to increase the use and understanding of 

computer code in ecology (Joppa et al. 2013; Mislan et al. 2016). Due to its popularity among 

ecologists, many of the cutting-edge developments in SDM are released in the code-based 
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computer program R (and, to a lesser extent, Python). While not as accessible as turn-key 

approaches, the use of these programs allows ecologists to run their analyses using the most 

up-to-date methods available, often long before they are made available with turn-key 

interfaces. Also, users are not restricted to the (often small) selection of SDM approaches 

made available by turn-key system developers, but instead can select from the growing range 

of algorithms being continually developed by the scientific community. 

Within R there are several packages that can be used to run SDMs. One of the more 

commonly used packages is dismo, which includes functions for many popular SDM 

methods, has direct access to GBIF point records and BIOCLIM climate covariates, and has the 

ability to produce ensemble predictions (Hijmans et al. 2017). A recently developed package 

called sdm also provides an extensive framework for developing SDMs using several 

approaches, and also allows interrogation of results through a GUI (Naimi & Araújo 2016, 

2018). There are specific packages for running SDM algorithms, such as maxnet for MaxEnt 

(Phillips Steven 2017; Phillips Steven et al. 2017), gbm for Boosted Regression Trees, and 

randomForest for Random Forests (Liaw & Wiener 2002; Breiman et al. 2018). These packages 

are under constant development by the user community, but all require greater experience 

with computer code and programs such as R than an equivalent turn-key system. 

5 Conclusions and recommendations 

Turn-key systems are relatively easy to use, produce appealing graphical outputs and extend 

the accessibility of SDMs to many more users. However, they result in serious concessions 

because many (or most) of the myriad adjustable SDM settings are concealed or inaccessible 

to the user.  

We do not advocate that MLWR support the development and subsequent use of potentially 

over-simplified tools, such as ‘black box’, turn-key modelling software, by end-users to 

support conservation decisions. MLWR needs to promote a wider recognition that SDMs 

should be developed by experts with clear knowledge of the target species and statistical 

assumptions. This would be best achieved by continuing to support the development of in-

house expertise in SDM and ensuring that outputs of SDM that can support decision-making 

are widely publicised and made available.  

There is little interest among MWLR staff in using turn-key systems, so we do not 

recommend tailoring existing turn-key systems for use in New Zealand for internal MWLR 

purposes. A current barrier to developing credible SDMs in New Zealand is ready access to 

both species and environmental data.  

MWLR is well placed to:  

 further develop effective data delivery pipelines 

 provide primary data for users to incorporate into their own modelling (e.g. make 

data available to be harvested by R packages in the same way the R-package dismo 

has direct access to GBIF point records)  
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 provide spatial covariate data for users to incorporate into their own modelling 

without a lot of pre-processing (e.g. allow automatic scaling of layers to consistent 

resolutions). 
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