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Summary 

Project and Client 

• Lincoln Agritech has contracted Manaaki Whenua Landcare Research to develop a GIS 

layer of artificially drained land in New Zealand (NZ).  

Objectives  

• Develop a national GIS layer that identifies land that is suitable for artificial drainage 

(i.e. land where artificial drainage may be useful or necessary), and then refine 

according to land that is most likely to be artificially drained according to land-use 

intensity and other factors.  

• Validate the result with known observations of artificially drainage. 

Scope 

• The scope is restricted to farmland artificial drainage types that have the most direct 

link to surface freshwater bodies through surface channelling (e.g. drains, 

hump/hollow) or subsurface conduits (e.g. tiles, moles, perforated pipe).  

• Scale of analysis is constrained by available national datasets (mostly 1:50,000 scale). 

Methods 

• Literature review was undertaken to identify soils known or recommended to be 

suitable for artificial drainage, and to identify soil properties that influence suitability. 

• A suitability model has been developed in ESRI ArcGIS 10.3 using fuzzy set theory, 

whereby semantic statements are constructed to scale relevant datasets (soils, soil 

properties) into membership functions. These are combined via fuzzy overlay to 

produce a novel rating of land suitability for artificial drainage. 

• Drainage scheme data held by various regional and territorial authorities have been 

sourced and compiled into a new national dataset of surface drain networks (i.e. 

drains managed by councils as assets). 

• A contemporary land-use intensity map has been developed, representing agricultural 

intensity at the block level (i.e. within farm).  

• A second fuzzy logic model to estimate the likelihood of land being artificially drained 

has been produced, including the development of scaled relationship functions and 

fuzzy membership classes for land use intensity and surface drain density.  

• A validation dataset has been compiled, drawing from the National Soils Database 

(NSD), resource consents (regional authorities), aerial photography interpretation 

(surface drainage), and new observations from a variety of sources. A simple 

validation is performed by overlay. 

Results and conclusions 

• A fuzzy inference method was developed for estimating both the suitability of land for 

artificial drainage, and the likelihood of artificial drainage in New Zealand.  
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• New input datasets were developed with value beyond this project, including a land 

intensity layer, a line network of artificial surface drains maintained by councils, a new 

dataset of land under statutory protections, and a validation point dataset of 

observed artificial drainage. 

• Two national ‘suitability for artificial drainage’ estimates were produced, based on the 

mean-area weighted suitability of multiple soil types occurring within single soil 

polygons, and the maximum value suitability of compound soil units. The former is 

best used for reporting areas, while the latter is more appropriate for validation 

purposes. At the 0.5 fuzzy probability threshold, we estimate the area of land suitable 

for drainage in NZ at 5.4 million ha or 20% of NZ’s total land area (mean-area 

weighted method).   

• Two national ‘likelihood of being artificially drained’ estimates were produced. 

Likelihood modifies suitability by taking into account current land cover, land-use 

type and intensity, slope, and the proximity of receiving drain networks (to transfer 

water away from drained areas).  

• We estimate that 2.5 million hectares of land is currently artificially drained at the 0.55 

fuzzy probability level (moderate confidence). Confidence classes are provided.  

• The estimate achieves a 90% validation accuracy using 8,000 observation points. 

Accuracy could be improved with more rigorous cleaning of the observations, and a 

proportion of the inaccuracy arises from scale limitations associated with the soil 

input data. 

Recommendations 

We have developed a national GIS layer and map that predicts the current extent of 

artificially drained land in NZ at different levels of confidence. Our estimate achieves a 

prediction accuracy of 90%. 

We recommend that the artificial drainage layer be made available for use in national and 

regional modelling applications. In particular, those applications involving contaminant 

source and flow modelling that haven’t yet been able to fully account for the contribution 

from landscapes with artificial drainage. 

We also recommend the continued growth and enhancement of artificial drainage 

datasets, namely the surface drain dataset, and the point observation (validation) data. 

Understanding of artificial drainage and its importance to surface water quality will 

continue to grow, and improvements in these datasets will contribute to better estimates 

and certainties. 
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1 Introduction 

Artificial drainage is the modification of natural pathways of water flow to improve the 

removal of excess water from otherwise wet land. Such modifications are increasingly 

recognised as important pathways for the transport of contaminants from land to 

freshwater (Stenger et al. 2016; Monaghan et al. 2016). 

Historically, little has been done to monitor the installation or expansion of artificial 

drainage in NZ. Few estimates of the extent of artificially drained land have been made, 

and those that have tend to focus on soils and soil properties, and areas of land that may 

benefit from having artificial drainage installed. These are suitability evaluations. To our 

knowledge, none has yet made an estimate of actual artificial drainage extent – land that 

is actually drained, rather than an estimate of land that may be suitable for drainage. 

Manaaki Whenua – Landcare Research was previously contracted by Lincoln Agritech to 

develop a proposal for mapping artificial drainage in NZ. The report (Manderson & Belliss 

2016) contains much of the background material used in this report. This study focuses on 

detailing the method and presenting results. 

1.1 Objectives 

The aim is to develop a national GIS layer that identifies land that is suitable for artificial 

drainage (i.e. land where artificial drainage would be useful or necessary), and then refine 

the result into land that is likely to be artificially drained. The final map will be validated 

using observations. 
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2 Method 

The method involved three key stages. First, suitability for artificial drainage was identified 

from fuzzy inference applied to soil permeability, drainage class, and expert-

recommended soils for drainage. Two suitability outputs were produced (maximum and 

mean weighted average) to accommodate multiple soils recorded for single polygons. 

Second, the likelihood of being artificially drained is predicted by combining suitability 

with a drainage likelihood layer developed from land cover, legal protection, surface 

drainage networks, and a specially constructed land use intensity layer. Last, results are 

validated from a new spatial dataset of observed drainage. Maps of key input variables 

used in fuzzy inference are included as Appendix 2. 

2.1 Suitability for artificial drainage. 

Suitability describes whether artificial drainage would be useful or necessary. For example, 

it would be neither useful nor necessary to install drainage for a permeable soil that has 

no evidence of internal drainage restriction. Conversely, a slowly permeable and ‘poorly 

drained’ soil would qualify as being highly suitable.  

The method for estimating soil suitability for artificial drainage (Fig. 1) is applied to all soils 

in both the Fundamental Soils Layers (FSLs) and S-Map datasets. The FSLs provides near-

national coverage (99%) but is of low quality, while S-Map is of better quality but has 

limited national coverage (34%, September 2018). For this project, The Soil Map of Stewart 

Island (Leamy 1974) was manually digitised, attributed, and added to the FSLs dataset to 

provide national coverage (upgraded FSL coverage = 100%). In the final stages of the 

process, S-Map results were overwritten into the FSLs to generate a hybrid national soil 

map. 

 

 

Figure 1 Process of estimating soil suitability for artificial drainage. 

 

Both the FSLs and S-Map contain polygons that record more than one soil. These 

compound soil codes were disaggregated for analysis. Up to three and six soils per 

polygon can be recorded in the FSLs and S-Map, respectively. S-map has an attribute 

describing the proportion (as a percent) of a soil within a given polygon. The proportion 
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for FSLs is assumed at 60:40 for two compound soils (a common ratio used in early soil 

and land resource surveys), and 60:20:20 for three compound soils.  

2.1.1 Fuzzy membership development  

Three factors were used to develop inputs for the fuzzy inference of soil suitability for 

artificial drainage: Soil drainage class, soil permeability class, and expert-recommended 

soils for drainage. 

The soil drainage class fuzzy membership is based on soil drainage class recorded in both 

the FSLs and S-Map. Drainage class (Table 1) describes the natural wetness condition of a 

soil, inferred from the observation of redox segregations and low chroma colours at 

different depths of the soil profile (Milne et al. 1995). These features are the result of 

differences in waterlogging and reducing conditions over long periods of time, and thus 

provide a strong inference for determining artificial drainage suitability. 

Table 1 Soil drainage class 

Class Description/interpretation FSL 

code 

Smap 

code 

Fuzzy 

value 

Very poor Organic soils, or organically-enriched mineral soils with grey subsoil 1 vp 0.999 

Poor Significant redox features occur up to the base of the topsoil 2 p 0.999 

Imperfect Significant redox features below 40cm depth 3 i 0.5 

Moderate  Minor redox features evident within the upper profile 4 mw 0.2 

Well No significant redox features within 80cm depth 5 w 0.05 

 

The small number of classes available limits options to develop a continuously scaled 

fuzzy relationship. Hence, we assign fuzzy values directly to the classes (Table 1). Very 

poorly drained and poorly drained soils are highly suitable for artificial drainage, while well 

drained soils – by definition – do not require artificial drainage and are therefore 

unsuitable. The greatest uncertainty is with imperfectly drained soils, which may or may 

not be suitable for artificial drainage depending on other soil properties. Moderately well 

drained soils are similar, but we assign a slight suitability in recognition that artificial 

drainage may be a feasible proposition under certain soil conditions and intensive cattle 

stocking rates. 

Soil permeability class describes how freely water moves down through the soil profile 

(irrespective of drainage class). Permeability is an important indicator of wetness potential 

for soils that do not have seasonally fluctuating water tables. Under such conditions, soils 

with rapid permeability are unsuitable for artificial drainage, while slowly permeable soils 

that generate excess water (e.g. ponding) are more suitable. The soil permeability fuzzy 

membership is based on aggregated classes from the FSLs and S-Map (Table 2).  

 

 



 

- 4 - 

Table 2 Soil permeability classes 

Class FSL code Smap code Description Fuzzy value 

Slow S s slow 0.999 

Med/slow M/S m/s slow 0.999 

Slow/med S/M s/m slow 0.999 

Slow/rapid S/R s/r slow 0.999 

Rapid/slow R/S r/s slow 0.999 

Medium M m medium 0.5 

Rapid/med R/M r/m medium 0.5 

Medium/rapid M/R m/r rapid 0.15 

Rapid R r rapid 0.15 

 

The development of drainage and permeability fuzzy memberships was broadly calibrated 

against the drainage and permeability class combinations used by Pearson (2015). 

Development of the expert-recommended fuzzy membership is based on the 

identification of soils that experts and commentators have recommended as requiring, or 

being suitable for, artificial drainage. Recommendations are drawn mostly from literature 

(see Manderson & Belliss 2016). In addition, we manually extracted drainage 

recommendations from 170 Soil Information Sheets for the Southland Region.1 

Recommendations from literature use different soil naming and classification systems. 

These were unified through standardisation to the NZ Soil Classification (NZSC). The fuzzy 

membership was developed on the strength of recommendations (e.g. ‘requires’ vs. ‘may 

respond well’ to artificial drainage), and the ‘degree of wetness’ suggested by NZSC 

descriptions to the subgroup level as outlined by Hewitt (2010). Fuzzy values for over 250 

soil classifications are listed as Appendix 1. 

2.1.2 Fuzzy inference modelling 

Lookup tables were created and used to assign the previously developed fuzzy 

membership values to individual soils within polygons for both the FSLs and S-Map. Fuzzy 

modelling was implemented within a database environment using the same equations 

used in ESRI’s gamma Fuzzy Overlay. Gamma values were tested to ensure an equally 

calculated midpoint (i.e. where the three input variables have the same input of 0.5, the 

result will always equal 0.5). The calculations were implemented for each soil within a 

polygon. A rule was applied to the results to force all poor and very poorly drained soils to 

a high suitability. This is because – irrespective of any other criteria – poor and very poorly 

drained soils will always have the highest suitability for artificial drainage. 

                                                 

1 http://venturesouthland.co.nz/resources/land-use-information/soil-information-sheets 
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Polygons with multiple soils produced multiple fuzzy probabilities that needed to be 

aggregated to a single prediction. Aggregating by the maximum probability recognises 

that some part of a polygon will be suitable for artificial drainage, but distorts the 

suitability of the whole polygon. In contrast, area weighted average produces a better 

overall summary, but can smooth large values (e.g. 50% highly unsuitable + 50% highly 

suitable produces an indeterminate result). This method may also create problems with 

validation, when validation data are more detailed than the soils data. A third option was 

developed, whereby a linear weighting function was developed and applied as a scaled 

area weighted average to emphasis high suitability inclusions (Fig. 2). 

 

 

Figure 2 Weighting function applied to the area weighted average to emphasise higher 

suitability soils in multi-soil polygons. 

 

Other methods of aggregation were considered, including the unweighted average, and a 

non-aggregation technique of using the first probability (of the dominant soil). An initial 

implementation check was performed by using S-Map results, comparing the total count 

of polygons that would qualify according to the different methods (Table 2) (an eligibility 

of 25% indicates that 25% of S-Map qualifies as being suitable for artificial drainage at the 

0.5 probability threshold). Other than the maximum, most methods produced a similar net 

result, but the pattern of qualifying polygons was different between the techniques. 
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Table 3 Comparison of different aggregation methods for S-Map multi-soil polygons 

Method Description Total 

count 

Count of 

polygons 

>0.5 prob. 

Eligibility 

(%) 

Dominant soil Probability for the first sibling (i.e. the 

dominant soil only)  

533759 133785 25% 

Average The mean probability of all siblings 

(unweighted). Does not account for proportion 

533759 134284 25% 

Maximum Maximum probability. Recognises that a 

sibling may require drainage, but ignores the 

proportion of that sibling. 

533759 164528 31% 

Area weighted 

average 

Average probability weighted by area 533759 127076 24% 

Scaled area 

weighted average 

Scaled/weighted sibling probabilities, then 

weighted by area 

533759 133944 25% 

 

A provisional validation check was also performed using a small set of consent data 

provided by Environment Southland. The dataset describes 800 km of subsurface tile 

drains. Convex hull polygons were constructed around clusters of tile drains, and 

intersected with S-Map and FSL outputs. Land suitable for drainage is reported by percent 

of the total convex hull footprint (10,370 ha) at different probabilities (Table 4).  

Table 4 Percent of land suitable for artificial drainage (within Southland tile drain footprint) 

at different fuzzy probability levels, for S-Map and the FSLs 

Fuzzy 

value 

S-Map results FSL results 

Dom soil Mean Maximum Area wgt 

mean 

Scaled area 

wgt mean 

Maximum Area wgt 

mean 

0.4 77% 89% 90% 88% 89% 60% 59% 

0.45 75% 86% 88% 79% 84% 60% 59% 

0.5 75% 77% 88% 77% 78% 60% 59% 

0.55 74% 72% 87% 71% 76% 60% 59% 

0.6 74% 71% 87% 71% 71% 60% 59% 

0.65 74% 68% 86% 69% 71% 60% 58% 

0.7 74% 65% 86% 68% 71% 60% 58% 

 

These are positive results, although they do not achieve 100% accuracy. The FSLs 

produced a notable lower accuracy. A small part of the inaccuracy is explained by the 

convex hull method. Further, we also encountered a little uncertainty with some of the tile 

drain data itself (see Section 3.2.2). However, the largest inaccuracies are apparent with 

soils that do not qualify as being suitable for artificial drainage because they are well 

drained. This, we believe, is a scale-related error, in that not every small area of different 

soil can be recorded in a given soil polygon. However, it is occasionally possible that 
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otherwise well-drained soils in Southland do actually have some drainage installed, mainly 

to capture excess water from localised seeps (Ross Monaghan, pers. comm.).  

We opted to include both the maximum and the scaled area weighted average methods 

(i.e. two suitability layers were produced). Both layers were implemented through the 

likelihood model to produce two equally valid results, but with applications for different 

purposes. 

2.2 Likelihood of artificial drainage 

Suitability describes the potential for artificial drainage according to soils and their 

properties. However, while a soil may qualify as being highly suitable, other considerations 

are necessary to determine if it is likely to be drained. For example, a highly suitable soil 

located in native forest is unlikely to have artificial drainage. 

Four key factors are considered in the development of a likelihood classification: land 

cover, land use intensity, slope, and proximity to surface drain networks. 

2.2.1 Land cover  

A land cover fuzzy membership was developed using non-agricultural covers from the 

2012 Land Cover Database (LCDB 4.2) (Table 5), wetlands from the Freshwater Ecosystems 

of New Zealand (FENZ) database, non-agricultural covers from the Topo50 dataset, and a 

specially constructed layer of land under statutory protection. 

Table 5 Reclassification of LCDB4 covers 

Class LCDB4 2012 land cover classes Fuzzy value 

Likely High Producing Exotic Grassland, Low Producing Grassland, Orchard, Vineyard or 

Other Perennial Crop, Short-rotation Cropland 

0.99 

Unlikely Alpine Grass/Herbfield, Broadleaved Indigenous Hardwoods, Built-up Area 

(settlement), Deciduous Hardwoods, Depleted Grassland, Estuarine Open Water, 

Exotic Forest, Fernland, Flaxland, Forest – Harvested, Gorse and/or Broom, Gravel or 

Rock, Herbaceous Freshwater Vegetation, Herbaceous Saline Vegetation, Indigenous 

Forest, Lake or Pond, Landslide, Mangrove, Mānuka and/or Kānuka, Matagouri or 

Grey Scrub, Mixed Exotic Shrubland, Permanent Snow and Ice, River, Sand or Gravel, 

Sub Alpine Shrubland, Surface Mine or Dump, Tall Tussock Grassland, Transport 

Infrastructure, Urban Parkland/Open Space 

0.01 

 

Drainage of wetlands for agricultural purposes is considered as unlikely. While such 

drainage does occur, it is increasingly rare, as many remaining wetlands are afforded 

either explicit protection or restricted development through regional plans and policies. 

For this analysis, current wetlands recorded in the FENZ database are considered unlikely 

to be drained, and are thus assigned a fuzzy membership value of 0.1. 
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Non-agricultural covers were also extracted from the NZ Topo50 Landcover Dataset.2 

Features included airports, buildings, canals, cemeteries, gravel pits, ice, lagoon, lake, 

landfill, mine, mud, pond, pumice pit, quarry, residential areas, shingle, snow, and scree. All 

are considered to have low likelihood of being artificially drained for farming purposes. 

A new layer depicting land under statutory protection was constructed for 2018. This 

involved sourcing and combining spatial data describing Queen Elizabeth II3 open space 

covenants, Ngā Whenua Rāhui protection,4 and Department of Conservation Public 

Conservation Areas.5 Other statutory protection mechanisms were identified by reviewing 

relevant Acts (e.g. Reserves Act 1977, National Parks Act 1990, Wildlife Act 1953) and 

extracting qualifying parcels through string query from LINZ datasets. Artificial drainage is 

considered unlikely for all land managed under a statutory protection. 

The resulting land cover was largely binary in character, in that only two primary classes 

could be constructed (likely or unlikely to be drained). Accordingly, the implication of land 

cover was added to the analysis as a conditional Boolean statement that overwrites any 

other fuzzy value (i.e. land under non-agricultural covers will always have a low likelihood 

of being artificially drained).  

2.2.2 Slope  

Soils that require artificial drainage are more likely to be encountered on flat land (Hudson 

et al. 1962; Bowler 1980). However, we found few references for guidelines regarding 

maximum slope for artificial drainage. We suspect this is because even steep slopes can be 

drained with the appropriate system of drainage (e.g. contour drains). Further, it is feasible 

to drain moderately steep slopes by installing tiles or perforated pipe horizontal to the 

slope itself (David Horne, pers. comm.). Generally, however, we expect that drainage of 

steep slopes is for the most part avoided to minimise risks associated with blowout and 

scouring, and because steeper land is often less productive than flat land, and thus less 

favourable for drainage investment. 

Analysis was undertaken to identify potential slope thresholds. First, we identified 54 soils 

in the National Soils Database that noted artificial drainage as part of the site description. 

The majority of these soils had a slope of 0, and the maximum slope recorded was 4.  

Second, tile drain data supplied by Environment Southland was intersected with slope 

(derived from a 15-m resolution DEM) to calculate the minimum, maximum, and average 

slope along drain lines. While some very steep slopes were implicated (red crosses in Fig. 

3) they tended to be extreme outliers, perhaps explained as data inaccuracies (in the DEM 

or the tile drain data). Results indicated that artificial drainage is most likely to occur on 

flat to undulating slopes (88% of tile lines occurred on slopes 0–7), and least likely for 

                                                 

2 https://data.linz.govt.nz/set/4786-nz-topo50-landcover-data/ 

3 https://qeiinationaltrust.org.nz/ 

4 https://www.doc.govt.nz/get-involved/funding/nga-whenua-rahui/ 

5 https://catalogue.data.govt.nz/dataset/doc-public-conservation-areas 
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strongly rolling country where slopes approached 20. In-between slopes (rolling, 7–15) 

carry the most uncertainty.  

 

Figure 3 Left: Boxplot of average, maximum, and minimum slopes calculated along 

Southland tile drain lines (tile drain data supplied by Environment Southland). Right: 

Frequency distribution (as percent of total count) of maximum slope with a fitted power 

function (red line). 

The frequency distribution modelled well as a power function for direct translation into a 

fuzzy membership. However, the Southland tile drain dataset is only a small sample of NZ 

drainage types and drainage types. After consultation with other expertise (Drs D Horne 

and R Monaghan), the eligibility of slopes <=7 was increased by fitting a sigmoid 

function. However, initial testing produced fuzzy outputs that were strongly biased by the 

slope fuzzy membership. Subsequent attempts at weighting also produced erroneous 

results, so we adopted a scaled transformation method whereby the fuzzy membership 

function was converted to a weighted scaling factor (Fig. 4). Implementation to the soil 

suitability layers, results in nil or little transformation to fuzzy values at low slopes, but a 

strong transformation to lower likelihood values in the 7–20 slope range, and a uniform 

low likelihood beyond 20 slopes. 
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Figure 4 Multiplier function for accommodating the effect of slope on drainage likelihood. 

Likelihood is slightly decreased as slope increases to 7, and then rapidly decreased out to a 

maximum slope of 20 where artificial drainage is least likely.  

 

2.2.3 Distance from drains  

Surface drains are either a type of drainage installed in situations where subsurface drains 

are inappropriate (e.g. draining peat soils), or higher order drain networks that transport 

water away from drained areas. The occurrence and density of surface drains is a good 

indicator (i.e. carries high likelihood) that land has been artificially drained. 

A new artificial surface drain layer has been compiled, and used to generate a distance 

from drains adjustment factor. The drain layer includes approximately 16,260 km of 

network based on the LINZ Topo50 dataset,6 and a further 8,680 km sourced from ten 

regional and district authorities (Fig. 5). The LINZ Topo50 drains were cleaned to remove 

man-made waterways that are least likely to associate with artificial drainage (e.g. canals, 

water races), while council data are assumed to be of high quality as council drains are 

managed as assets as part of drainage schemes.  

A distance from drains layer was calculated using Euclidean distance at a 15m pixel 

resolution. We propose that likelihood of artificial drainage is high for farms that contain 

or neighbour surface drain lines. The average dairy farm size is 185 ha according to the 

Agribase farm dataset, which broadly translates to a farm length of 1,360 m assuming a 

basic geometry. Hence, land within 1,360 m is modelled as being most likely. We propose 

                                                 

6 https://data.linz.govt.nz/layer/50262-nz-drain-centrelines-topo-150k/ 
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a maximum distance of 2,000 m (~400 ha farm), beyond which the surface drain dataset 

becomes an unreliable predictor for likelihood. 

 

Figure 5 Sources of surface drain network data. 
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The surface drain layer is an incomplete dataset. Based on comparisons with council and 

Topo50 data, there are likely drains that have yet to be mapped, or were not able to be 

obtained from a particular district authority. Any national fuzzy membership generated 

with incomplete data will produce misleading results for those areas where data are not 

available. 

To accommodate this problem, the distance from drains is used as a fuzzy-membership 

modifier, whereby values from the interim land use fuzzy membership are adjusted 

according to their proximity to drains. We use a distance decay function (Fig. 6). In this 

way, we increase likelihood in areas that have surface drains, but do not change the 

likelihood for areas were drain data are missing. 

 

Figure 6 Multiplier function for adjusting fuzzy memberships according to distance from 

surface drains (fuzzy values >2000m are multiplied by 1 and do not change. A conditional 

rule is applied to ensure no adjustment results in a fuzzy value >0.99). 

 

2.2.4 Land use intensity fuzzy membership 

The likelihood of artificial drainage being present is influenced by land use type and 

intensity. Artificial drainage of poorly drained soils under high stocking-rate dairy is almost 

a necessity (i.e. difficult if not impossible to maintain high dairy stocking rates on poorly 

drained soils without artificial drainage), while at the other extreme, artificial drainage for a 

low stocked sheep farm with poorly drained soils may only return marginal benefits (i.e. is 

not as necessary). 

The land use intensity fuzzy membership is developed using the Agribase farm dataset. 

Farm parcels with missing or indeterminate farm type classifications (e.g. NEW, UNS7) were 

manually classed if records contained sufficient enterprise data (e.g. analysis indicates 

                                                 

7 Agribase farm type codes are listed in Appendix 3 
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>50% of farm area is in stonefruit so farm type is classed as FRUIT), and through inference 

of trading or station name (e.g. named as an orchard, deer farm, etc.). Records that could 

not be classed were deleted and became part of ‘missing parcel’ infilling. 

Missing parcels are selected from LINZ’s primary parcels, and neighbouring clusters of 

parcels are merged to form farms (typically a farm comprises many ownership parcels). 

Not Otherwise Farmed (NOF) land use parcels such as roads, hydro, and railways, are 

classed directly from primary parcel attributes. Parcels were then further classed as NOF if 

parcel area is predominantly protected by legislation (Section 3.2.1) or urban land use 

dominates (using settlements from the soon to be published 2016 LUCAS Land Use Map). 

Remaining unclassed parcels are then subjected to infilling by land use signatures and/or 

dominant neighbouring land use.  

Signatures are created by overlaying Agribase farm types with land cover, slope, potential 

stock carrying capacity, and land use capability, to identify the dominant or average 

characteristic of a given land use. A similar overlay is performed with the unclassed 

parcels, and the two layers are matched to class the closest land use. This is 

complemented with an analysis to identify the dominant neighbouring land use by area 

(i.e./e.g. if a parcel is surrounded by dairy farms, and the signature suggests dairy land use, 

then the parcel is most likely to be a dairy farm). 

The fuzzy membership is developed by a direct classification of non-pastoral land uses 

(Table 6), and a sub-classification of dominant pastoral farming types according to 

stocking rate intensity. Land uses that involve cropping are difficult to rate, as most 

cropping takes place during the drier months (and is, thus, non-limiting) but this needs to 

be balanced against wetness interfering or delaying cultivation and harvesting.  

Table 6 Initial classification of Agribase farm types by intensity7 

Likelihood class Agribase farm types Fuzzy 

value 

Low API, DOG, DPL, FIS, FOR, MPL, MTW, NAT, NOF, OPL, OTH, PIG, PKH, POU, 

RAB, RET, SHW, SLY, TOU, URB, ZOO 

0.3 

Moderate ALA, ARA, EMU, FLO, GOA, GRA, HOR, LIF, OAN, OST 0.5 

High FRU, NUR, VEG, VIT 0.7 

(pastoral farm types) BEF, DAI, DEE, DRY, SHP, SNB - 

 

Key pastoral farms are classified by intensity according to stocking rate levels within each 

farm type (Fig. 7). Stocking rate is calculated using effective farm area from the enterprise 

data (if available and logical) or from effective area calculated via overlay with LCDB 

agricultural covers. Agribase total stock numbers are disaggregated to stock class 

numbers using percent make-up of Territorial Authority (TA) livestock numbers reported in 

the Agricultural Production Survey. Missing and outlier values were then replaced using 

stocking rate averages by TA and farm type. Intensity classifications are assigned by 

quartile (Fig. 7), and used as a basis for fuzzy membership values. Initial testing indicated 

these values were too high and needed to be weighted (Table 7). 
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Figure 7 Boxplot of stocking rates calculated for key Agribase pastoral farming types, and 

example showing the method of classifying stocking rate by intensity (SNB). 

 

Table 7 Likelihood of artificial drainage matrix for pastoral farm types by stocking intensity 

  Low Mod low Mod high High 

DAI 0.61 0.65 0.7 0.75 

DRY 0.50 0.5 0.61 0.65 

BEF 0.50 0.5 0.61 0.65 

SNB 0.45 0.50 0.56 0.63 

DEE 0.40 0.5 0.50 0.61 

SHP 0.40 0.5 0.50 0.61 

 

2.3 Validation dataset development 

A validation dataset of locations where artificial drainage has been observed has been 

constructed. This is the first attempt to compile such a dataset, and could be considerably 

improved if more resource had been available. The primary sources of observations 

include: 
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• National Soil Database points where artificial drainage is recorded in the site 

description. Records range in date from 1967 to 1990. Site coordinates would have 

been taken from topographical maps and thus may have a degree of location error. 

An initial 57 possible sites were cleaned down to 50. 

• Two study site locations used in the Transfer Pathways Programme (TPP). 

• Resource consent locations for earthworks relating to drainage by ‘humping and 

hollowing’ or flipping supplied by West Coast Regional Council. Dataset includes 240 

points. It is not clear if point locations are for the main farm entrance (common for 

resource consents) or the actual areas of drained land. 

• Resource consent data for tile drains supplied by Environment Southland. Drain lines 

are converted to points (one point per line, located at the line midpoint).  3,365 

points. 

• A new dataset of sub-farm surface drain networks for the Hauraki Plains digitised off 

hill shaded lidar is converted from lines to points to provide 3,909 points. 

• A small dataset of observations made by the author mostly in the Wellington Region 

as part of soil mapping field work (55 observations). 

• Tile and mole plan for Aorangi Research Farm (AgResearch) in the Manawatu. Lines 

converted to points to provide 386 sites. 

A total of 8,000 observation points has been assembled. However, the points are highly 

clustered according to dataset source, and will thus produce location bias in the validation 

results. A map of the validation point locations is provided in Appendix 2. 

2.3.1 Final modelling 

All fuzzy memberships are converted to raster formats at 15m pixel resolution for final 

modelling. The model itself (Fig. 8) applies adjustments to land use and soil suitability 

input layers, which are then combined via ESRI’s gamma fuzzy overlay. The model is 

applied to both methods of suitability aggregation (maximum value and scale weighted-

area average) to produce two outputs. The model generates fuzzy probability values 

ranging from 0 (definitely not a member) to 1 (definitely a member). 
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Figure 8 Overview of the fuzzy inference model.
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3 Results 

Results for the two outputs are tabulated and mapped by fuzzy probability increments that 

cluster around the midpoint (Table 8; Fig. 9). In the interests of simplification, values <0.5 are 

proposed as the least likely to be drained, while values >0.6 are rated as having a high 

likelihood. The midpoint of 0.55 is set as the absolute threshold for generating a single 

classification for discussion purposes. However, the full range of fuzzy probabilities (Fig. 9) 

should be used for modelling and analyses that require an estimate of uncertainty. 

Results predicted using the “scaled weighted-area average method for suitability” provide a 

more realistic estimate of total areas, as the maximum value method reports total areas of 

polygons but in many cases only a proportion of the polygon will qualify as having high 

suitability for artificial drainage. The “maximum value” method has more relevance for 

validation purposes, as validation points will likely represent only small confine areas within 

the larger polygons used to determine the suitability layers. 

An estimate of 2.5 million ha of artificially drained land at the 0.55 threshold level is higher 

than an earlier estimate of 2.0 million ha for cultivatable land (Bowler 1973), but compares 

well to the 2.7 million ha estimated for ‘arable land’8 made using NZ’s first spatial land 

resources database in the early 1980s (Fletcher 1982). 

Table 8 Hectares and percent of NZ land area under artificial drainage estimated at different 

levels of fuzzy probability (fuzziness), for the two methods of aggregating soil suitability 

(maximum value and scaled weighted-area average) 

Soil max 

 

Soil mean 

fProb Hectares %NZ 

 

fProb Hectares %NZ 

45 3479068 13% 

 

45 3149552 12% 

50 3192703 12% 

 

50 2834619 11% 

55 2914241 11% 

 

55 2528708 9% 

60 2574397 10% 

 

60 2220358 8% 

65 2276090 9% 

 

65 1966285 7% 

70 1997898 7% 

 

70 1673349 6% 

 

                                                 

8 ‘Arable land’ is defined as Land Use Capability class 4 or better, with slopes <=15. This is similar to the slope 

factor decay function used in this analysis (Section 3.2.2). 
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Figure 9 The estimated extent of artificially drained land in NZ. 
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Figure 10 Fuzzy probability of land being artificially drained. 
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3.1 Validation 

The model validates favourably. The total percentage of observed versus predicted drainage 

is 90% for the estimated based on the maximum value suitability method (Table 9), and 87% 

for the scaled weighted-area average method (Table 10). A small but notable percentage in 

the 0.4–0.5 probability range falls just outside our proposed confidence thresholds, 

suggesting our threshold values could be refined. For individual datasets, both the NSD and 

West Coast consents achieve the lowest rates of agreement.  

Table 9 Percent of validation points that coincide with land predicted to be artificially drained 

(maximum value method) 

Dataset 
# 

points 

Confidence class 

High  

(>0.6) 

Moderate 

(0.55-0.6) 

Low  

(0.5-0.55) 

Very low 

(undrained) 

(0.4-0.5) 

Undrained 

(<0.4) 

Aorangi 386 96% 2% 

  

2% 

ES tile drains 3365 86% 3% 1% 3% 7% 

Hauraki 3909 87% 2% 

 

5% 5% 

NSD 50 76% 4% 

 

16% 4% 

TPP 2 100% 

    

Wellington 55 96% 

  

2% 2% 

West Coast consents 240 56% 5% 

 

20% 19% 

All datasets (total) 8007 87% 2% 1% 5% 6% 

 

Table 10 Percent of validation points that coincide with land predicted to be artificially drained 

(scaled weighted-area average method) 

Dataset #points 

Confidence class 

High  

(>0.6) 

Moderate 

(0.55-0.6) 

Low  

(0.5-0.55) 

Very low 

(undrained) 

(0.4-0.5) 

Undrained 

(<0.4) 

Aorangi 386 63% 21% 13% 1% 2% 

ES tile drains 3365 82% 3% 3% 4% 8% 

Hauraki 3909 87% 2% 1% 5% 5% 

NSD 50 80% 0% 

 

16% 4% 

TPP 2 100% 0% 

   

Wellington 55 91% 5% 

  

4% 

West Coast consents 240 52% 7% 1% 17% 23% 

All datasets (total) 8007 83% 4% 2% 5% 7% 
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Reasons for lower agreement were investigated by extracting values for each input layer to 

individual validation points, and then averaged by confidence class to determine which inputs 

were ‘dragging down’ the final fuzzy probability estimates (Table 11).  

Table 11 Average values for model input layers by confidence class 

Confidence class 
# 

points 

Average values for model input layers 

Slope Distance Land use Land cover Wgt soil Max soil 

High (>0.6) 6610 1.00 1.55 0.50 1.00 0.91 0.94 

Moderate (0.55–0.6) 291 0.99 1.36 0.44 0.98 0.50 0.64 

Low (0.5–0.55) 187 0.97 1.23 0.51 0.97 0.40 0.54 

Very low (undrained) (0.4–0.5) 537 0.98 1.47 0.47 0.57 0.56 0.61 

Undrained (<0.4) 382 0.96 1.35 0.47 0.86 0.14 0.19 

 

Two key discrepancies are apparent for the undrained classes: 

• Low values for land cover suggest that a significant proportion of points coincide with 

non-agricultural land covers (agricultural covers should have a value near 0.99). This is 

especially true with the NSD and West Coast datasets. The former contains dated records 

(back to 1967) and land cover has changed since this time. The West Coast is more 

difficult to untangle because of uncertainty regarding point placement (farm entrance vs 

drained area) but a large number of points coincide with native vegetation. 

• Very low soil-suitability values in the Undrained (<0.4) class suggest the majority of these 

points coincide with soils that have been mapped as having minor or nil 

wetness/drainage impediments. This was confirmed with a visual inspection of a sample, 

with a high proportion of the errant validation points coinciding with soils mapped as 

well drained, and to a lesser extent, moderately well drained. Some of this is likely to be 

mapping error, but we believe that the major cause is scale-related, in that the scale of 

the soils data (1:50,000) is far more coarse than the paddock-scale detail of the validation 

points. 

From this we deduce that validation accuracy could be improved by a more rigorous cleaning 

of the validation dataset, especially with respect to dated records. Further, inaccuracies with 

soils data had a strong influence on the result, suggesting that the model itself will perform 

even better with more accurate data. However, this should be balanced with recognition that 

the validation dataset is opportunist in character, as it is based on what could be sourced 

within the project frame. 
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4 Conclusions 

A fuzzy inference method was developed for estimating both the suitability of land for 

artificial drainage, and the likelihood of artificial drainage in New Zealand.  

• New input datasets were developed with value beyond this project, including a land 

intensity layer, a line network of artificial surface drains maintained by councils, a new 

dataset of land under statutory protections, and a validation point dataset of observed 

artificial drainage. 

• Two national ‘suitability for artificial drainage’ estimates were produced, based on the 

mean-area weighted suitability of multiple soil types occurring within single soil 

polygons, and the maximum value suitability of compound soil units. The former is best 

used for reporting areas, while the latter is more appropriate for validation purposes. At 

the 0.5 fuzzy probability threshold, we estimate the area of land suitable for drainage in 

NZ at 5.4 million ha or 20% of NZ’s total land area (mean-area weighted method).   

• Two national ‘likelihood of being artificially drained’ estimates were produced. Likelihood 

modifies suitability by taking into account current land cover, land use type and intensity, 

slope, and the proximity of receiving drain networks (to transfer water away from drained 

areas).  

• We estimate that 2.5 million hectares of land is currently artificially drained at the 0.55 

fuzzy probability level (moderate confidence). Confidence classes are provided. 

• The estimate achieves a 90% validation accuracy using 8,000 observation points. 

Accuracy could be improved with more rigorous cleaning of the observations, and a 

proportion of the inaccuracy arises from scale limitations associated with the soil input 

data. 

5 Recommendations 

We have developed a national GIS layer and map that predicts the current extent of artificially 

drained land in NZ at different levels of confidence. Our estimate achieves a prediction 

accuracy of 90%. 

We recommend that the artificial drainage layer be made available for use in national and 

regional modelling applications; in particular, for those applications involving contaminant 

source and flow modelling that have not yet been able to fully account for the contribution 

from landscapes with artificial drainage. 

We also recommend the continued growth and enhancement of artificial drainage datasets; 

namely the surface drain dataset, and the point observation (validation) data. Understanding 

of artificial drainage and its importance to surface water quality will continue to grow, and 

improvements in these datasets will contribute to better estimates and certainties. 
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Appendix 1 – Expert drainage suitability ratings by NZSC code 

 

 

NZSC Suitability NZSC Suitability NZSC Suitability NZSC Suitability NZSC Suitability

SAT 0.09 EODC 0.05 LPT 0.75 PUM 0.6 UEY 0.5

AFST 0.09 EOJ 0.07 MIM 0.6 PUT 0.05 UPS 0.75

AM 0.05 EOJC 0.08 MIT 0.05 PXJ 0.5 UPT 0.75

ATT 0.05 EOM 0.6 MIW 0.05 PXJC 0.5 UST 0.05

ATX 0.05 EOMC 0.6 MOBA 0.05 PXJM 0.6 UYM 0.6

BAM 0.6 EOMJ 0.6 MOBL 0.08 PXJN 0.5 UYT 0.22

BAMP 0.6 EOT 0.06 MOBT 0.05 PXM 0.6 UYZ 0.15

BAO 0.75 EPT 0.75 MOI 0.05 PXMC 0.6 WF 0.06

BAP 0.08 ERO 0.999 MOL 0.05 PXMJ 0.6 WGF 0.999

BAT 0.08 ERT 0.13 MOM 0.6 PXT 0.15 WGFQ 0.999

BFA 0.05 ERW 0.27 MOT 0.05 RF? 0.05 WGFU 0.999

BFAL 0.14 EVM 0.6 MOZ 0.05 RFA 0.05 WGQ 0.999

BFC 0.06 EVMC 0.6 MPT 0.87 RFAW 0.06 WGT 0.999

BFL 0.05 EVT 0.13 NOA 0.21 RFM 0.6 WH 0.15

BFM 0.6 GAH 0.999 NOM 0.6 RFMA 0.6 WHA 0.05

BFMA 0.6 GAO 0.999 NOT 0.14 RFMQ 0.6 WO 0.06

BFMP 0.6 GAP 0.999 NPA 0.75 RFMW 0.6 WS 0.05

BFP 0.08 GAT 0.999 NPT 0.999 RFT 0.13 WST 0.05

BFT 0.09 GAY 0.999 NXA 0.05 RFW 0.08 WT 0.05

BFW 0.15 GOA 0.99 NXM 0.6 RHI 0.05 WW 0.07

BLA 0.08 GOC 0.999 NXT 0.1 ROA 0.09 WX 0.15

BLAD 0.05 GOE 0.98 OFA 0.999 ROAW 0.05 XNT 0.15

BLAM 0.5 GOI 0.999 OFS 0.999 ROM 0.6 XOT 0.06

BLD 0.05 GOJ 0.999 OHA 0.999 ROT 0.09 XPT 0.6

BLF 0.1 GOM 0.999 OHM 0.99 ROW 0.1 ZDH 0.99

BLM 0.6 GOO 0.999 OMA 0.999 RSA 0.05 ZGT 0.999

BLT 0.06 GOP 0.999 OMM 0.999 RSK 0.05 ZOH 0.06

BLX 0.05 GOQ 0.999 PIC 0.15 RSM 0.6 ZOT 0.21

BMA 0.07 GOT 0.999 PID 0.16 RST 0.06 ZPH 0.79

BMG 0.05 GRA 0.999 PIM 0.6 RTB 0.31 ZPHP 0.999

BMM 0.6 GRF 0.999 PIMD 0.6 RTBA 0.05 ZPOZ 0.999

BMT 0.1 GRO 0.999 PIT 0.06 RTBL 0.41 ZPP 0.87

BOA 0.06 GRQ 0.999 PJA 0.2 RTBP 0.05 ZPQ 0.999

BOC 0.05 GRT 0.999 PJC 0.15 RTM 0.6 ZPT 0.24

BOH 0.05 GSA 0.999 PJM 0.6 RTT 0.06 ZPU 0.999

BOI 0.06 GSC 0.999 PJMU 0.6 RXT 0.06 ZPZ 0.999

BOM 0.6 GSO 0.999 PJMW 0.6 SAH 0.05 ZXF 0.34

BOMA 0.6 GSQ 0.999 PJN 0.27 SAM 0.6 ZXH 0.2

BOP 0.11 GST 0.999 PJT 0.13 SAW 0.05 ZXP 0.5

BOT 0.08 GTO 0.999 PJU 0.15 SIM 0.6 ZXQ 0.15

BOW 0.15 GUF 0.999 PJW 0.15 SIT 0.06 ZXU 0.54

BSA 0.05 GUFQ 0.999 PLM 0.6 SJK 0.14 BOMW 0.6

BSM 0.6 GUT 0.999 PLT 0.11 SJL 0.05 EPJ 0.75

BSMP 0.6 LGT 0.999 PPC 0.999 SJM 0.6 LGO 0.999

BSP 0.05 LIM 0.75 PPF 0.999 SJQ 0.1 RXA 0.06

BST 0.08 LIT 0.32 PPJ 0.999 SJT 0.13 ZDYH 0.999

BXT 0.14 LOA 0.05 PPJX 0.999 SZQ 0.05 NOL 0.06

EMG 0.05 LOM 0.6 PPT 0.999 UDM 0.71 ZDQ 0.999

EMM 0.6 LOT 0.06 PPU 0.91 UDP 0.75 BSA* 0.05

EMT 0.09 LOV 0.05 PPX 0.999 UEM 0.6 OLO 0.999

EOC 0.07 LOVA 0.08 PUJ 0.88 UEP 0.75 ZX 0.5
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Appendix 2 – Maps of key inputs 

 

Figure 11 Fuzzy membership layer for artificial drainage suitability (maximum value method). 
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Figure 12 Fuzzy membership layer for artificial drainage suitability (scaled area-weighted 

average method). 
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Figure 13 Fuzzy membership layer for land cover. 
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Figure 14 Fuzzy membership layer for land use (weighted). 
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Figure 15 Slope adjustment factor. 
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Figure 16 Distance to drains adjustment factor. 
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Figure 17 Validation set locations (point dataset). 
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Appendix 3 – Agribase farm type descriptions 

Code Description Modifications 

ALA Alpaca and/or Llama Breeding 

 

API Beekeeping and hives 

 

ARA Arable cropping or seed production 

 

BEF Beef cattle farming 

 

DAI Dairy cattle farming 

 

DEE Deer farming 

 

DOG Dogs 

 

DRY Dairy dry stock 

 

EMU Emu bird farming 

 

FIS Fish, Marine fish farming, hatcheries 

 

FLO Flowers 

 

FOR Forestry 

 

FRU Fruit growing 

 

GOA Goat farming 

 

GRA Grazing other people’s stock 

 

HOR Horse farming and breeding 

 

LIF Lifestyle block 

 

MTW Meat slaughter premises 

 

NAT Native Bush 

 

NEW New Record – Unconfirmed Farm Type Redefined by enterprise attributes or parcel infilling 

NOF Not farmed (i.e. idle land or non-farm use) Expanded to include roads, hydro, and protected 

land 

NUR Plant Nurseries 

 

OAN Other livestock (not covered by other types) 

 

OPL Other planted types (not covered by other 

types) 

 

OST Ostrich bird farming 

 

OTH Enterprises not covered by other classifications 

 

PIG Pig farming 

 

POU Poultry farming 

 

SHP Sheep farming 

 

SNB Mixed Sheep and Beef farming 

 

TOU Tourism (i.e. camping ground, motel) 

 

UNS Unspecified (i.e. farmer did not give indication) Redefined by enterprise attributes or parcel infilling 

VEG Vegetable growing 

 

VIT Viticulture, grape growing and wine 

 

ZOO Zoological gardens 

 

 


