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Motivation 
Convolutional Neural Networks (CNN) offer great opportunities 

for improved mapping of land cover, change and individual 

objects in remote sensing imagery

MWLR hosts a wide range of datasets that are ideal for deep learning tasks:

land cover database, environmental layers, soil maps, Sentinel-1/2 cloud-free imagery archive 

and seasonal mosaic, LiDAR data, …

Need for a flexible, operational workflow for mapping exercises 

at local-, regional- and national scale



Why not use existing 

open source DL 

pipelines?

▪ Optimized for geospatial imagery

▪ No need to worry about data processing

▪ Great tutorials and documentation

▪ Optimized workflows for classification / 

detection tasks

▪ Built-in popular DL models

▪ Very large code base 

▪ Locked-in to specific package versions

▪ Cumbersome to set up

▪ Difficult to extend or customise

▪ Not ideal for specific data/infrastructure 

needs

▪ Problems with NeSI HPC

▪ Create thousands of tiny files

https://github.com/azavea/raster-vision

https://github.com/CosmiQ/solaris

Lots of others, but some abandoned 

or too specific…

https://github.com/sshuair/torchsat

https://github.com/azavea/raster-vision
https://github.com/CosmiQ/solaris
https://github.com/sshuair/torchsat


DeepSeg We created a fit-for-purpose, reusable software pipeline that:

▪ runs on the NeSI HPC and on local PCs (with GPU support)

▪ allows for flexible training from geospatial layers and large volumes of remote sensing 

imagery 

▪ works with the efficient KEA-file format (HDF5-based)

▪ keeps inode usage on NeSI HPC at a minimum

▪ includes cross-validation statistics and error visualization 

▪ uses in-memory, tile-based prediction routines

▪ Instance segmentation of objects 

using MaskRCNN

▪ Semantic segmentation of 

using UNet64 and ResUNet

https://github.com/matterport/Mask_RCNN

https://arxiv.org/abs/1505.04597

Semantic and instance 

segmentation for remote 

sensing imagery

https://github.com/matterport/Mask_RCNN
https://arxiv.org/abs/1505.04597


DeepSeg

Semantic and instance 

segmentation for remote 

sensing imagery

Overall workflow

Image stack Label file Data Preparation

TrainingCross-ValidationPrediction



DeepSeg

# Unload all modules (only on NeSI)
module purge

# Install Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh  # follow install instructions

# Create Environment
conda deactivate
conda create --name deepseg -c conda-forge python=3.8 -y
conda activate deepseg

pip install tensorflow==2.4.1 keras==2.4.3 aiohttp attrs chardet

# only needed for local PC - on NeSI we can load the appropriate modules
conda install cudnn=7.6.5 cudatoolkit=11.0 -c conda-forge

conda install pyyaml ipython geopandas rasterio tqdm ipdb cudnn rios \
gdal Pillow cython scikit-image imgaug -c conda-forge –y

pip install opencv-python h5py==2.10.0 opencv-python-headless pycm runstats

# Install MaskRCNN
cd DeepSeg/models/Mask_RCNN-tf2
python setup.py install

Easy installation on local PC, NeSI HPC, 

Singularity or Docker containerSemantic and instance 

segmentation for remote 

sensing imagery



Semantic and instance 

segmentation for remote 

sensing imagery

DeepSeg

resunet.py unet64.py MaskRCNN

▪ 12 files, 1 module, no more than 200 lines per file

▪ User only needs to edit 1 file: experiment.yaml

▪ User can easily create more experiments with different configurations

▪ Extensible model zoo:



Semantic and instance 

segmentation for remote 

sensing imagery

DeepSeg

experiment.yaml

▪ 12 files, 1 module, no more than 200 lines per file

▪ User only needs to edit 1 file: experiment.yaml

▪ User can easily create more experiments with different configurations

▪ Extensible model zoo:

resunet.py unet64.py MaskRCNN

# Configuration for DeepSeg

### General Parameters
resolution: 0.1
tilesize: 1024
overlap: 256
nbands: 3
…
segmentation_type: "instance"
stages:            “dataprep,train,crossval,predict“
…
epochs: 500
learning_rate: 0.001
…



Semantic and instance 

segmentation for remote 

sensing imagery

DeepSeg

resunet.py unet64.py MaskRCNN

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh experiment.yaml

# Configuration for DeepSeg

### General Parameters
resolution: 0.1
tilesize: 1024
overlap: 256
nbands: 3
…
segmentation_type: "instance"
stages:            “dataprep,train,crossval,predict“
…
epochs: 500
learning_rate: 0.001
…

▪ 12 files, 1 module, no more than 200 lines per file

▪ User only needs to edit 1 file: experiment.yaml

▪ User can easily create more experiments with different configurations

▪ Extensible model zoo:



DeepSeg

Run whole experiment (tile creation, training, cross-validation, prediction):

# locally

conda activate deepseg

sh DeepSeg.sh YOUR-EXPERIMENT

# on NeSI

sbatch DeepSeg.sh YOUR-EXPERIMENT

export DEEPSEG_EXPERIMENT=YOUR-EXPERIMENT

conda activate deepseg

python create_training_data.py

python train_semantic.py

python predict.py

Run individual steps with:

Execute DL pipeline locally / interactively 

or as batch job on NeSI

…
SBATCH --job-name=DeepSeg
SBATCH --partition=gpu
SBATCH --gpus-per-node=A100:1
module load CUDA/11.2.0
…

Semantic and instance 

segmentation for remote 

sensing imagery

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh



▪ Rasterization of vector labels

▪ Creation of (overlapping) vector tiles 

▪ Intersection with vector or raster labels

DeepSeg

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

Semantic and instance 

segmentation for remote 

sensing imagery

▪ Storage of image and label tiles in one HDF5 file

▪ HDF5 data file can be re-used in multiple experiments

▪ Calculation of online statistics for datasets larger than memory



DeepSeg

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

Semantic and instance 

segmentation for remote 

sensing imagery

▪ Flexible model training for instance or semantic models with 

Tensorflow-based routines

▪ Custom image generator class to ingest image/label tiles from HDF5 file

▪ MaskRCNN required refactoring to work in TF v2.4

▪ Custom Dataset class for MaskRCNN to work with the same HDF5 data file

class HDF5Dataset(utils.Dataset):
def load_hdf5(self, dataset_source, subset):

""" loads the image tiles from the prepared HDF5 file
""“
…

▪ Immediate training feedback

with log graphs (image files)

in addition to Tensorboard

def HDF5ImageGenerator(hdf5_x, hdf5_y, batch_size, statistics):
…

▪ Careful image augmentation (e.g., avoid smoothing effects during rotation)



Classification error

visualization

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

True Positive

False Positive

True Negative

False Negative



Detailed accuracy

statistics / reports

Training

Test

Cross-Validation

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py

DeepSeg.sh



Prediction pipeline

Orchestration

Prediction

Cross-Validation

Training

Data 
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py

DeepSeg.sh

Experiences and recommendations

▪ The same prediction routine for instance and semantic classification 

▪ GDAL/rasterio-based, on-the-fly processing of extremely large raster files

▪ Batch size depends on memory requirements (how many tiles are processed at the 

same time)

▪ Tile overlap should be chosen based on the largest objects

▪ Consider simplifying polygons to avoid extremely large vector-files

▪ Pre-defined colormaps (or random colours) are stored with the prediction 



Experiments

Individual tree 

detection and instance 

segmentation

Training

446 tiles at 1024 x 1024 px

Prediction

Raster 146,400 x 237,600 px

59,210 tiles at 1024 x 1024 px

(256 px overlap)

Number of instances:

~670,000 trees



Experiments

Multi-class

semantic classification

Training on LiDAR-derived 

classes

Ground

Tree Canopy 

Buildings



Experiments

1

Mapping land slides

Inputs:

▪ Digital Elevation Model

▪ 4-Band WorldView (before)

▪ 4-Band WorldView (after)

Mapping land cover

Inputs:

▪ 10-band Sentinel-2 imagery 

▪ LCDB 5 spatial layer



Experiments

1

Mapping land slides

Inputs:

▪ Digital Elevation Model

▪ 4-Band WorldView (before)

▪ 4-Band WorldView (after)

Mapping forest destock

Inputs:

▪ 10-Band Sentinel-2 (before)

▪ 10-Band Sentinel-2 (after)

Accuracy: 95% 

Most errors are too difficult for humans 
to distinguish



Thank you

Questions?

Feel free to contact me at schindlerj@landcareresearch.co.nz

or our team at www.landcareresearch.co.nz

mailto:schindlerj@landcareresearch.co.nz
http://www.landcareresearch.co.nz/

