
Experiences developing an operational workflow for

large-scale instance and semantic segmentation of

remote sensing imagery using CNNs

Jan Schindler, Brent Martin, Alexander Amies, Ben Jolly and David Pairman

New Zealand Research Software Engineering Conference | 17 September 2021

Motivation
Convolutional Neural Networks (CNN) offer great opportunities

for improved mapping of land cover, change and individual

objects in remote sensing imagery

MWLR hosts a wide range of datasets that are ideal for deep learning tasks:

land cover database, environmental layers, soil maps, Sentinel-1/2 cloud-free imagery archive

and seasonal mosaic, LiDAR data, …

Need for a flexible, operational workflow for mapping exercises

at local-, regional- and national scale

Why not use existing

open source DL

pipelines?

▪ Optimized for geospatial imagery

▪ No need to worry about data processing

▪ Great tutorials and documentation

▪ Optimized workflows for classification /

detection tasks

▪ Built-in popular DL models

▪ Very large code base

▪ Locked-in to specific package versions

▪ Cumbersome to set up

▪ Difficult to extend or customise

▪ Not ideal for specific data/infrastructure

needs

▪ Problems with NeSI HPC

▪ Create thousands of tiny files

https://github.com/azavea/raster-vision

https://github.com/CosmiQ/solaris

Lots of others, but some abandoned

or too specific…

https://github.com/sshuair/torchsat

https://github.com/azavea/raster-vision
https://github.com/CosmiQ/solaris
https://github.com/sshuair/torchsat

DeepSeg We created a fit-for-purpose, reusable software pipeline that:

▪ runs on the NeSI HPC and on local PCs (with GPU support)

▪ allows for flexible training from geospatial layers and large volumes of remote sensing

imagery

▪ works with the efficient KEA-file format (HDF5-based)

▪ keeps inode usage on NeSI HPC at a minimum

▪ includes cross-validation statistics and error visualization

▪ uses in-memory, tile-based prediction routines

▪ Instance segmentation of objects

using MaskRCNN

▪ Semantic segmentation of

using UNet64 and ResUNet

https://github.com/matterport/Mask_RCNN

https://arxiv.org/abs/1505.04597

Semantic and instance

segmentation for remote

sensing imagery

https://github.com/matterport/Mask_RCNN
https://arxiv.org/abs/1505.04597

DeepSeg

Semantic and instance

segmentation for remote

sensing imagery

Overall workflow

Image stack Label file Data Preparation

TrainingCross-ValidationPrediction

DeepSeg

Unload all modules (only on NeSI)
module purge

Install Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh # follow install instructions

Create Environment
conda deactivate
conda create --name deepseg -c conda-forge python=3.8 -y
conda activate deepseg

pip install tensorflow==2.4.1 keras==2.4.3 aiohttp attrs chardet

only needed for local PC - on NeSI we can load the appropriate modules
conda install cudnn=7.6.5 cudatoolkit=11.0 -c conda-forge

conda install pyyaml ipython geopandas rasterio tqdm ipdb cudnn rios \
gdal Pillow cython scikit-image imgaug -c conda-forge –y

pip install opencv-python h5py==2.10.0 opencv-python-headless pycm runstats

Install MaskRCNN
cd DeepSeg/models/Mask_RCNN-tf2
python setup.py install

Easy installation on local PC, NeSI HPC,

Singularity or Docker containerSemantic and instance

segmentation for remote

sensing imagery

Semantic and instance

segmentation for remote

sensing imagery

DeepSeg

resunet.py unet64.py MaskRCNN

▪ 12 files, 1 module, no more than 200 lines per file

▪ User only needs to edit 1 file: experiment.yaml

▪ User can easily create more experiments with different configurations

▪ Extensible model zoo:

Semantic and instance

segmentation for remote

sensing imagery

DeepSeg

experiment.yaml

▪ 12 files, 1 module, no more than 200 lines per file

▪ User only needs to edit 1 file: experiment.yaml

▪ User can easily create more experiments with different configurations

▪ Extensible model zoo:

resunet.py unet64.py MaskRCNN

Configuration for DeepSeg

General Parameters
resolution: 0.1
tilesize: 1024
overlap: 256
nbands: 3
…
segmentation_type: "instance"
stages: “dataprep,train,crossval,predict“
…
epochs: 500
learning_rate: 0.001
…

Semantic and instance

segmentation for remote

sensing imagery

DeepSeg

resunet.py unet64.py MaskRCNN

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh experiment.yaml

Configuration for DeepSeg

General Parameters
resolution: 0.1
tilesize: 1024
overlap: 256
nbands: 3
…
segmentation_type: "instance"
stages: “dataprep,train,crossval,predict“
…
epochs: 500
learning_rate: 0.001
…

▪ 12 files, 1 module, no more than 200 lines per file

▪ User only needs to edit 1 file: experiment.yaml

▪ User can easily create more experiments with different configurations

▪ Extensible model zoo:

DeepSeg

Run whole experiment (tile creation, training, cross-validation, prediction):

locally

conda activate deepseg

sh DeepSeg.sh YOUR-EXPERIMENT

on NeSI

sbatch DeepSeg.sh YOUR-EXPERIMENT

export DEEPSEG_EXPERIMENT=YOUR-EXPERIMENT

conda activate deepseg

python create_training_data.py

python train_semantic.py

python predict.py

Run individual steps with:

Execute DL pipeline locally / interactively

or as batch job on NeSI

…
SBATCH --job-name=DeepSeg
SBATCH --partition=gpu
SBATCH --gpus-per-node=A100:1
module load CUDA/11.2.0
…

Semantic and instance

segmentation for remote

sensing imagery

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

▪ Rasterization of vector labels

▪ Creation of (overlapping) vector tiles

▪ Intersection with vector or raster labels

DeepSeg

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

Semantic and instance

segmentation for remote

sensing imagery

▪ Storage of image and label tiles in one HDF5 file

▪ HDF5 data file can be re-used in multiple experiments

▪ Calculation of online statistics for datasets larger than memory

DeepSeg

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

Semantic and instance

segmentation for remote

sensing imagery

▪ Flexible model training for instance or semantic models with

Tensorflow-based routines

▪ Custom image generator class to ingest image/label tiles from HDF5 file

▪ MaskRCNN required refactoring to work in TF v2.4

▪ Custom Dataset class for MaskRCNN to work with the same HDF5 data file

class HDF5Dataset(utils.Dataset):
def load_hdf5(self, dataset_source, subset):

""" loads the image tiles from the prepared HDF5 file
""“
…

▪ Immediate training feedback

with log graphs (image files)

in addition to Tensorboard

def HDF5ImageGenerator(hdf5_x, hdf5_y, batch_size, statistics):
…

▪ Careful image augmentation (e.g., avoid smoothing effects during rotation)

Classification error

visualization

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py train_semantic.py

DeepSeg.sh

True Positive

False Positive

True Negative

False Negative

Detailed accuracy

statistics / reports

Training

Test

Cross-Validation

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py

DeepSeg.sh

Prediction pipeline

Orchestration

Prediction

Cross-Validation

Training

Data
preparation

create_training_data.py

crossval.py

predict.py

train_instance.py

DeepSeg.sh

Experiences and recommendations

▪ The same prediction routine for instance and semantic classification

▪ GDAL/rasterio-based, on-the-fly processing of extremely large raster files

▪ Batch size depends on memory requirements (how many tiles are processed at the

same time)

▪ Tile overlap should be chosen based on the largest objects

▪ Consider simplifying polygons to avoid extremely large vector-files

▪ Pre-defined colormaps (or random colours) are stored with the prediction

Experiments

Individual tree

detection and instance

segmentation

Training

446 tiles at 1024 x 1024 px

Prediction

Raster 146,400 x 237,600 px

59,210 tiles at 1024 x 1024 px

(256 px overlap)

Number of instances:

~670,000 trees

Experiments

Multi-class

semantic classification

Training on LiDAR-derived

classes

Ground

Tree Canopy

Buildings

Experiments

1

Mapping land slides

Inputs:

▪ Digital Elevation Model

▪ 4-Band WorldView (before)

▪ 4-Band WorldView (after)

Mapping land cover

Inputs:

▪ 10-band Sentinel-2 imagery

▪ LCDB 5 spatial layer

Experiments

1

Mapping land slides

Inputs:

▪ Digital Elevation Model

▪ 4-Band WorldView (before)

▪ 4-Band WorldView (after)

Mapping forest destock

Inputs:

▪ 10-Band Sentinel-2 (before)

▪ 10-Band Sentinel-2 (after)

Accuracy: 95%

Most errors are too difficult for humans
to distinguish

Thank you

Questions?

Feel free to contact me at schindlerj@landcareresearch.co.nz

or our team at www.landcareresearch.co.nz

mailto:schindlerj@landcareresearch.co.nz
http://www.landcareresearch.co.nz/

