

Experiences developing an operational workflow for large-scale instance and semantic segmentation of remote sensing imagery using CNNs

Jan Schindler, Brent Martin, Alexander Amies, Ben Jolly and David Pairman

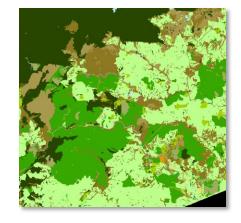
New Zealand Research Software Engineering Conference | 17 September 2021

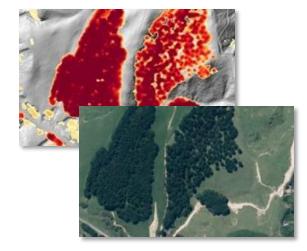
Motivation

Convolutional Neural Networks (CNN) offer great opportunities for improved mapping of land cover, change and individual objects in remote sensing imagery

MWLR hosts a wide range of datasets that are ideal for deep learning tasks:

land cover database, environmental layers, soil maps, Sentinel-1/2 cloud-free imagery archive and seasonal mosaic, LiDAR data, ...





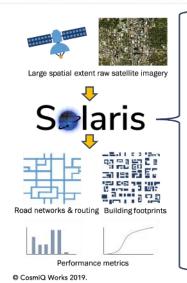
Need for a flexible, operational workflow for mapping exercises at local-, regional- and national scale

Why not use existing open source DL pipelines?

- Optimized for geospatial imagery
- No need to worry about data processing
- Great tutorials and documentation
- Optimized workflows for classification / detection tasks
- Built-in popular DL models
- Very large code base
- Locked-in to specific package versions
- Cumbersome to set up
- Difficult to extend or customise
- Not ideal for specific data/infrastructure needs
- Problems with NeSI HPC
- Create thousands of tiny files

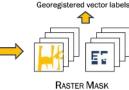
Selaris

An open source ML pipeline for overhead imagery by CosmiQ Works



https://github.com/CosmiO/solaris

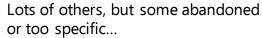
TILE ML-compatible tiling Tileserver-compatible labels ЧF 23 **RASTERIZE LABELS** ML-compatible labels



ML prediction output

STITCH

VECTORIZE



🖸 setust futtra data pastra stara 515 Julia 40 Datas: MIT TorchSat is an open-source deep learning framework for satellite imagery analysis based on PyTorch

https://github.com/sshuair/torchsat

Instervision

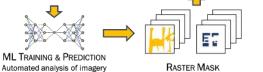
Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch.

https://github.com/azavea/raster-vision

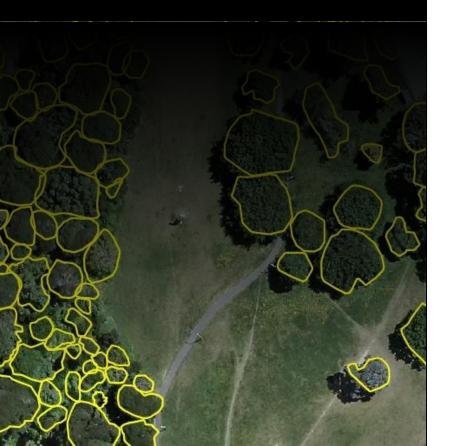
Chip Classification

Object Detection

Semantic Segmentation



Semantic and instance segmentation for remote sensing imagery

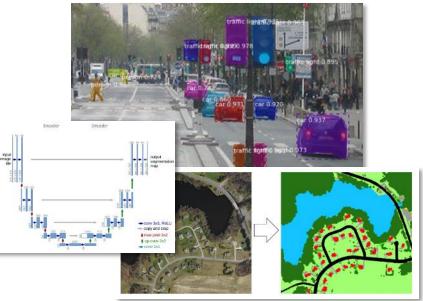


We created a fit-for-purpose, reusable software pipeline that:

- runs on the NeSI HPC and on local PCs (with GPU support)
- allows for flexible training from geospatial layers and large volumes of remote sensing imagery
- works with the efficient KEA-file format (HDF5-based)
- keeps inode usage on NeSI HPC at a minimum
- includes cross-validation statistics and error visualization
- uses in-memory, tile-based prediction routines

- Instance segmentation of objects using MaskRCNN
- Semantic segmentation of
 - using UNet64 and ResUNet

https://github.com/matterport/Mask_RCNN https://arxiv.org/abs/1505.04597

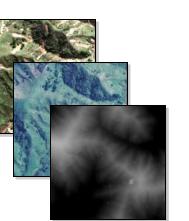


Semantic and instance segmentation for remote sensing imagery

Overall workflow

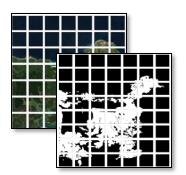
Image stack

Label file

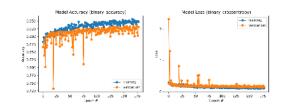


 \Box

Data Preparation

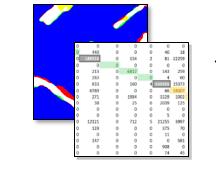


Training



Prediction

Cross-Validation



Semantic and instance segmentation for remote sensing imagery

Easy installation on local PC, NeSI HPC, Singularity or Docker container

Unload all modules (only on NeSI) module purge

Install Miniconda

vget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh h Miniconda3-latest-Linux-x86_64.sh # follow install instructions

Create Environment

conda deactivate

conda create --name deepseg -c conda-forge python=3.8 -y conda activate deepseg

pip install tensorflow==2.4.1 keras==2.4.3 aiohttp attrs chardet

only needed for local PC - on NeSI we can load the appropriate modules conda install cudnn=7.6.5 cudatoolkit=11.0 -c conda-forge

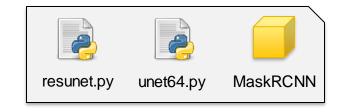
:onda install pyyaml ipython geopandas rasterio tqdm ipdb cudnn rios \ gdal Pillow cython scikit-image imgaug -c conda-forge –y

pip install opencv-python h5py==2.10.0 opencv-python-headless pycm runstats

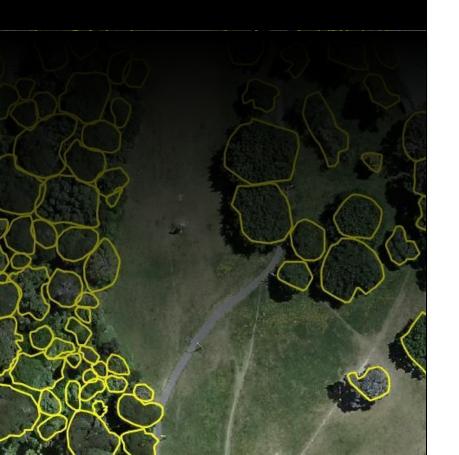
Install MaskRCNN cd DeepSeg/models/Mask_RCNN-tf2 python setup.py install

Semantic and instance segmentation for remote sensing imagery

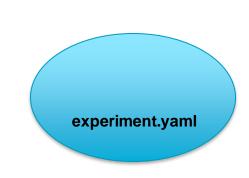
- **12 files**, 1 module, no more than 200 lines per file
- User only needs to edit 1 file: experiment.yaml
- User can **easily create more experiments** with different configurations
- Extensible **model zoo**:



Semantic and instance segmentation for remote sensing imagery



- **12 files**, 1 module, no more than 200 lines per file
- User only needs to edit 1 file: experiment.yaml
- User can **easily create more experiments** with different configurations
- Extensible model zoo:



Configuration for DeepSeg

General Parameters

resolution:0.1tilesize:1024overlap:256nbands:3

...

segmentation_type: "instance" stages: "dataprep,train,crossval,predict" ... epochs: 500 learning_rate: 0.001

Semantic and instance segmentation for remote sensing imagery

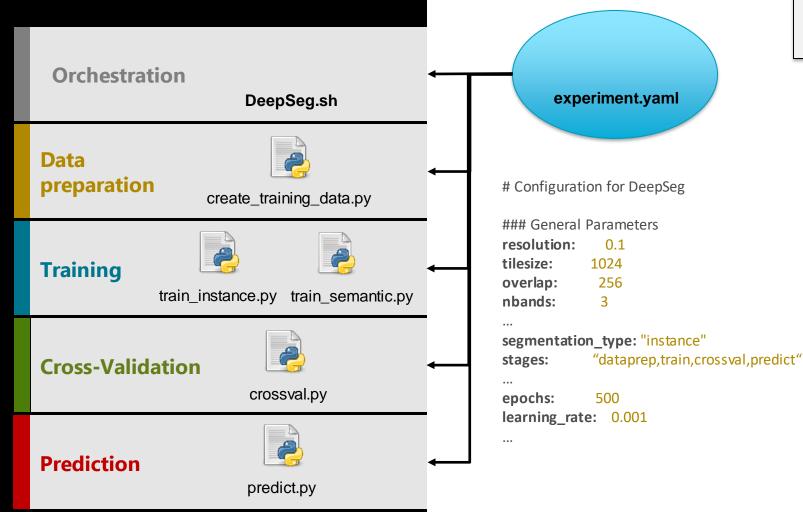
- 12 files, 1 module, no more than 200 lines per file
- User only needs to edit 1 file: experiment.yaml
- User can **easily create more experiments** with different configurations

resunet.py

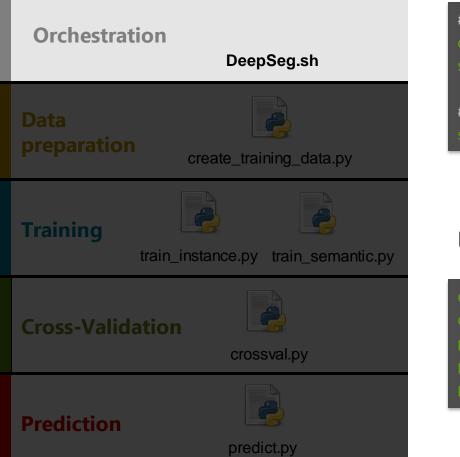
unet64.py

MaskRCNN

• Extensible **model zoo**:



Semantic and instance segmentation for remote sensing imagery



Execute DL pipeline locally / interactively or as batch job on NeSI

Run whole experiment (tile creation, training, cross-validation, prediction):

locally

conda activate deepseg sh DeepSeg.sh YOUR-EXPERIMENT

on NeSI sbatch DeepSeg.sh YOUR-EXPERIMENT

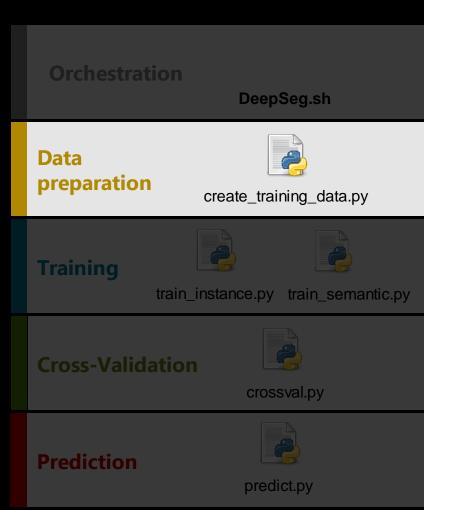
Run individual steps with:

export DEEPSEG_EXPERIMENT=YOUR-EXPERIMENT conda activate deepseg python create_training_data.py python train_semantic.py python predict.py

SBATCH --job-name=DeepSeg SBATCH --partition=gpu SBATCH --gpus-per-node=A100:1 module load CUDA/11.2.0

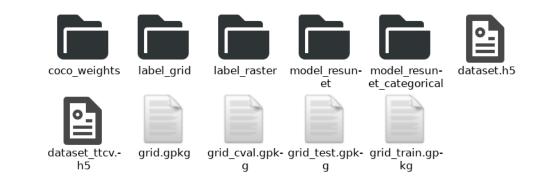
...

Semantic and instance segmentation for remote sensing imagery

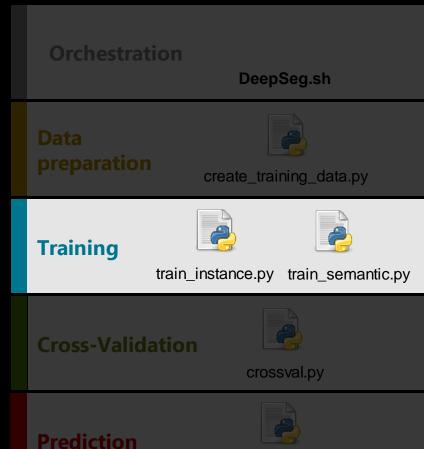


- Rasterization of vector labels
- Creation of (overlapping) vector tiles
- Intersection with vector or raster labels

- Storage of image and label tiles in **one** HDF5 file
- HDF5 data file can be re-used in multiple experiments
- Calculation of online statistics for datasets larger than memory



Semantic and instance segmentation for remote sensing imagery



- Flexible model training for instance or semantic models with Tensorflow-based routines
- Custom image generator class to ingest image/label tiles from HDF5 file

def HDF5ImageGenerator(hdf5_x, hdf5_y, batch_size, statistics):

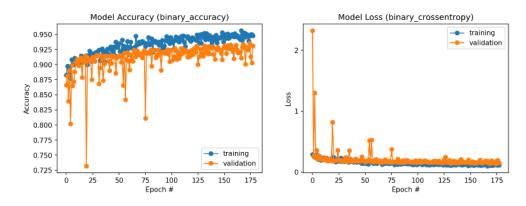
- MaskRCNN required refactoring to work in TF v2.4
- Custom Dataset class for MaskRCNN to work with the same HDF5 data file

class HDF5Dataset(<u>utils</u>.<u>Dataset</u>): def load_hdf5(self, dataset_source, subset): """ loads the image tiles from the prepared HDF5 file """ ...

Careful image augmentation (e.g., avoid smoothing effects during rotation)

Immediate training feedback

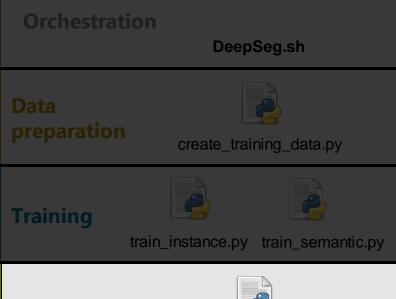
with log graphs (image files) in addition to Tensorboard



predict.py

Classification error visualization

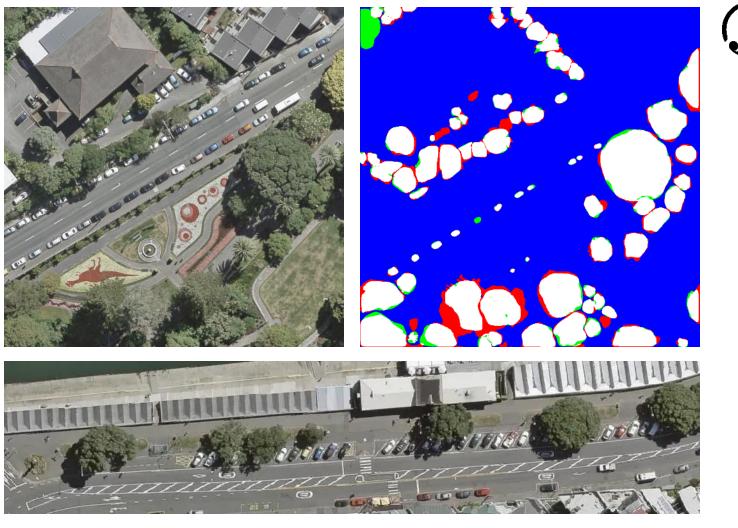
True Positive False Positive True Negative **False Negative**

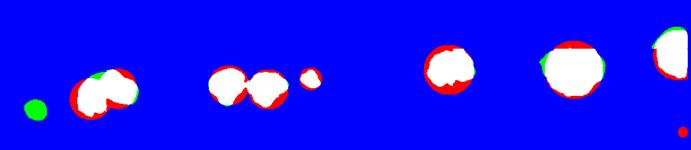


Cross-Validation

crossval.py

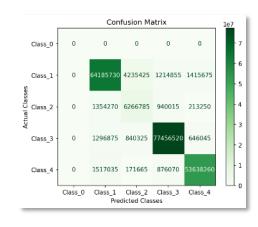
predict.py

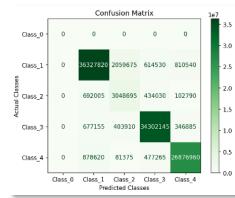




Detailed accuracy statistics / reports

Training

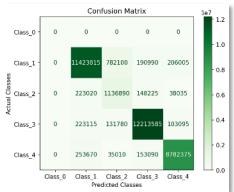




10

Test

Cross-Validation



Class Statistics

Class Statistics :															Class_0 Class_1 Class_2 Class_3 Class_4					
Class	Class_0	Class_1	Class_2	Class_3	Class_4	Description													Predi	cted Classes
ACC	1.0	0.94898	0.96414	0.97312	0.97762	Accuracy										_				
AGF	None	0.93338	0.81378	0.9719	0.96975	Adjusted F-score														
AGM	None	0.95061	0.90306	0.9739	0.97669	Adjusted geometric		1												
AM	0	-2697775	2739880	247695	-289800	Difference between	Class	Statistic	s :											
AUC	None	0.93733	0.84446	0.97152	0.97008	Area under the ROC	Class	Class_0	Class_1	Class 2	Class 3	Class_4	Descriptio							
AUCI	None	Excellent	Very Good	Excellent	Excellent	AUC value interpre	ACC	1.0	0.94699	0.9651	0.97268	0.97505	Accuracy							
AUPR	None	0.92119	0.62924	0.96383	0.95684	Area under the PR (AGF	None	0.93557	0.81343	0,96969	0.96632		Cl	64 10 10	-				
BCD	0.0	0.00624	0.00633	0.00057	0.00067	Bray-Curtis dissimi	AGM	None	0.95012	0.90323	0.97324	0.97406	Adjusted geometric mean	Class	Statisti	cs i				
BM	None	0.87466	0.68893	0.94303	0.94015	Informedness or bo	AM	0	-1236965	1316135	97875	-177045	Difference between automatic at	Class	Class 0	Class 1	Class 2	Class 3	Class 4	Description
CEN	None	0.15957	0.41847	0.08845	0.09757	Confusion entropy	AUC	None	0.93979	0.84411	0.96948	0.96673	Area under the ROC curve	ACC	1.0	0.94787	0.96232	0.97364	0.97811	Accuracy
DOR	None	316.34493	96.32402	1221.16578	1450.54852	Diagnostic odds rat	AUCI	None	Excellent	Very Good	Excellent	Excellent	AUC value interpretation	AGE	None	0.93374	0.82273	0.97168	0.96905	Adjusted F-score
DP	None	1.37841	1.09369	1.70183	1.74304	Discriminant power	AUPR	None	0.9271	0.62888	0.95872	0.95223	Area under the PR curve	AGM	None	0.95052	0.90767	0.97435	0.97695	Adjusted geometric mean
DPI	None	Limited	Limited	Limited	Limited	Discriminant power	BCD	0.0	0.00572	0.00609	0.00045	0.00082	Bray-Curtis dissimilarity	AM	0	-479290	539610	34315	-94635	Difference between automatic and manual classificatio
ERR	0.0	0.05102	0.03586	0.02688	0.02238	Error rate	BM	None	0.87957	0.68822	0.93896	0.93345	Informedness or bookmaker info	AUC	None	0.93829	0.85389	0.9714	0.96958	Area under the ROC curve
F0.5	None	0.93167	0.57146	0.96294	0.95832	F0.5 score	CEN	None	0.15102	0.41768	0.09829	0.10497	Confusion entropy	AUCI	None	Excellent	Very Good	Excellent	Excellent	AUC value interpretation
F1	None	0.92085	0.61777	0.96383	0.95683	F1 score - harmonic	DOR	None	306.44003	98,7651	1115.88116	1165,73931	Diagnostic odds ratio	AUPR	None	0.92436	0.64018	0.96256	0.95704	Area under the PR curve
F2	None	0.91028	0.67224	0.96472	0.95535	F2 score	DP	None	1.37079	1.09968	1.68024	1.69071	Discriminant power	BCD	0.0	0.00665	0.00749	0.00048	0.00131	Bray-Curtis dissimilarity
FDR	None	0.06098	0.45573	0.03766	0.04069	False discovery rate	DPI	None	Limited	Limited	Limited	Limited	Discriminant power interpretatic	BCD	None	0.87659	0.70779	0.94279	0.93916	Informedness or bookmaker informedness
FN	0	6865955	2507535	2783245	2564770	False negative/miss	ERR	0.0	0.05301	0.0349	0.02732	0.02495	Error rate	CEN	None	0.15323	0.40653	0.09088	0.09779	Confusion entropy
FNR	None	0.09663	0.28578	0.03469	0.04563	Miss rate or false m	F0.5	None	0.93573	0.57194	0.95794	0.95401	F0.5 score	DOR		314.85863	98.21351	1239.44255	1516.10417	Diamostic odds ratio
FOR	0.0	0.04642	0.01225	0.0205	0.01599	False omission rate	FI	None	0.92687	0.6177	0.95872	0.95222	F1 score - harmonic mean of pre	DOR	None	1.37728	1.09834	1239.44233	1.75363	Discriminant power
FP	0	4168180	5247415	3030940	2274970	False positive/type	F2	None	0.91818	0.67141	0.95951	0.95043	F2 score					Limited		
FPR	0.0	0.0287	0.02529	0.02228	0.01421	Fall-out or false po:	FDR	None	0.05827	0.45497	0.04259	0.04479	False discovery rate	DPI	None	Limited 0.05213	Limited 0.03768	0.02636	Limited 0.02189	Discriminant power interpretation
G	None	0.92102	0.62348	0.96383	0.95684	G-measure geometr	FN	0	3484745	1228825	1427950	1437260	False negative/miss/type 2 error	ERR F0.5	0.0 None	0.03213	0.57481	0.02636	0.02189	Error rate F0.5 score
							FNR	None	0.08753	0.28728	0.03996	0.05076	Miss rate or false negative rate							
							FOR	0.0	0.0501	0.01198	0.01975	0.01797	False omission rate	F1 F2	None	0.92401	0.62605	0.96255	0.95702	F1 score - harmonic mean of precision and sensitivity
							TP	0	2247780	2544960	1525825	1260215	False positive/type 1 error/false		None	0.91339	0.68732	0.96334		F2 score
							TPR	0.0	0.0329	0.0245	0.02107		Fall out or false positive rate	FDR	None	0.05772	0.45493	0.03875	0.03802	False discovery rate
							G	None	0.92699	0.62326	0.95872		G-measure geometric mean of p	FN	0	1179095	409280	457990	441770	False negative/miss/type 2 error
								isotte	0.72079	0.02320	0.00872	0.93222	Concessive geometric filent of p	FNR	None	0.09356	0.26471	0.03614	0.04789	Miss rate or false negative rate
														FOR	0.0	0.04929	0.01205	0.01962	0.01641	False omission rate
														FP	0	699805	948890	492305	347135	False positive/type 1 error/false alarm
														FPR	0.0	0.02985	0.02751	0.02106	0.01294	Fall-out or false positive rate
														G	None	0.92419	0.63308	0.96255	0.95703	G-measure geometric mean of precision and sensitivity

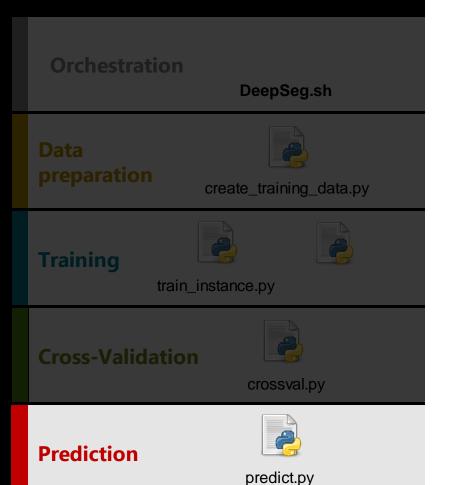
DeepSeg.sh create_training_data.py Training train_instance.py **Cross-Validation** crossval.py

Prediction

predict.py

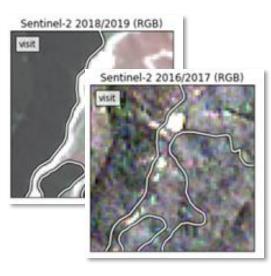
- 3.0 Confusion Matrix

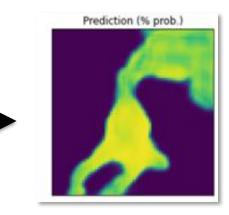
Prediction pipeline

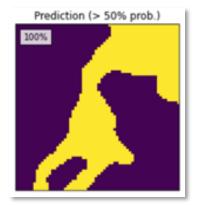


Experiences and recommendations

- The same prediction routine for instance and semantic classification
- GDAL/rasterio-based, on-the-fly processing of extremely large raster files
- Batch size depends on memory requirements (how many tiles are processed at the same time)
- Tile overlap should be chosen based on the largest objects
- Consider simplifying polygons to avoid extremely large vector-files
- Pre-defined colormaps (or random colours) are stored with the prediction







Individual tree detection and instance segmentation

Training 446 tiles at 1024 x 1024 px

Prediction

Raster 146,400 x 237,600 px 59,210 tiles at 1024 x 1024 px (256 px overlap)

Number of instances: ~670,000 trees

Multi-class semantic classification

Training on LiDAR-derived classes

Ground Tree Canopy Buildings

Mapping land slides

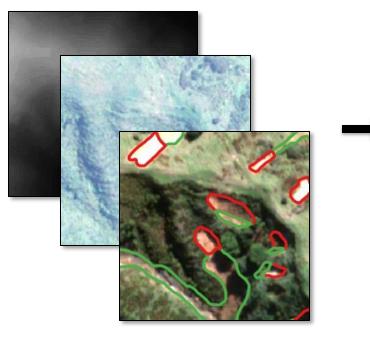
Inputs:

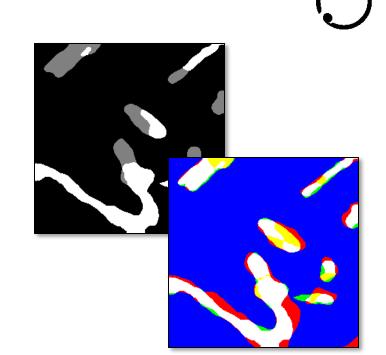
- Digital Elevation Model
- 4-Band WorldView (before)
- 4-Band WorldView (after)

Mapping land cover

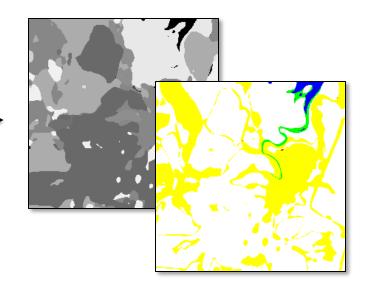
Inputs:

- 10-band Sentinel-2 imagery
- LCDB 5 spatial layer









Mapping land slides

Inputs:

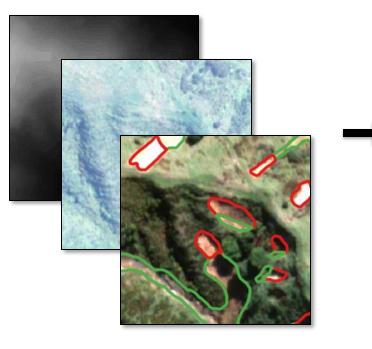
- Digital Elevation Model
- 4-Band WorldView (before)
- 4-Band WorldView (after)

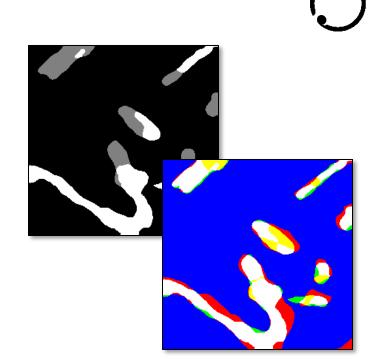
Mapping forest destock

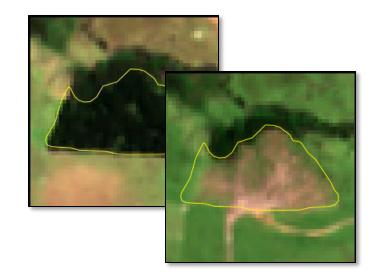
Inputs:

- 10-Band Sentinel-2 (before)
- 10-Band Sentinel-2 (after)

Accuracy: 95% Most errors are too difficult for humans to distinguish







Manaaki Whenua Landcare Research

Thank you

Questions?

Feel free to contact me at <u>schindlerj@landcareresearch.co.nz</u>

or our team at <u>www.landcareresearch.co.nz</u>