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Abstract

Recent opinion surveys point to water pollution, primarily from pastoral agriculture, as the largest environmental issue in New 
Zealand. With a prognosis for increased land use intensification, further water quality degradation seems highly likely. This 
paper outlines five major aspects of the diffuse pollution issue: 1. Characterisation of diffuse pollution and the shift from point 
to diffuse sources. The ‘universal’ diffuse pollutants: nutrients, fine sediments, and pathogens, all of which are mobilised by 
livestock, predominate in New Zealand waters. There has been a shift over the last 40 years from point sources to diffuse sources 
as the major contributors of pollution, with point sources now accounting for only 3.2% of the total nitrogen, and 1.8% of the 
total phosphorus fluxes to the sea. 2. Pathways of diffuse pollutants. Diffuse pollutants move into waters through: overland 
runoff; direct access to waters by livestock; and leaching to groundwater (often with associated legacy issues reflecting ground-
water residence times). These pathways are discussed illustrating the importance of understanding processes – particularly for 
targeting Beneficial Management Practices (BMPs). 3. Attenuation of diffuse pollutants through interception mechanisms and 
BMPs adjacent to, and in, streams. Attenuation is discussed for riparian zones, and in-stream processing. 4. Modelling of diffuse 
pollution has been done in New Zealand through mechanistic, stochastic and statistical approaches, and management-acces-
sible models are described. 5. Managing diffuse pollution needs to recognise that catchments are the most appropriate spatial 
management unit. Managing diffuse nutrient loads has recently been initiated in New Zealand through regulation by setting load 
limits (nutrient caps) on catchments, and through identified nutrient concentration targets.
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INTRODUCTION

New Zealand has much natural landscape with mountains and natural forest occupying ca.43% of the land surface. These 
areas contain near-pristine rivers, lakes and wetlands. The remaining land area comprises planted forest (5%) and pastoral 
and arable land (52%) and the country’s lowlands are almost devoid of natural landscape (Elliott, 2005; Davies-Colley, 
2009). Given the large area of pastoral farming, it is not surprising that New Zealand suffers considerable diffuse water 
pollution, and the link between pastoral intensification and declining water quality is increasingly acknowledged by the 
Government (New Start for Freshwater, 2009). This decline has been rated the country’s number one environmental problem 
in several opinion surveys. Water pollution, now overwhelmingly from diffuse sources, has been well documented and the 
management of diffuse pollutants is currently receiving considerable attention (Ministry for the Environment, 2009; Land 
and Water Forum, 2010). There has been government recognition of the “strong link” between land use intensification and 
water quality decline (Ministry for the Environment, 2009). The reasons for this attention relate to public pressure and 
changing perceptions of the value of natural waters. Behind these are the continuing drives by international primary 
commodity markets for the documentation of sustainability practices. A significant pressure for cleaner waters has come 
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from the indigenous Maori (Polynesian) people of Aotearoa/New Zealand. Maori recognise freshwater as a taonga (treasure) 
and have an obligation of guardianship of the landscape including waters (Land and Water Forum, 2010). 

The challenge facing New Zealand is how to cope with the economic drive for increased pastoral production while demon-
strably minimising contaminant loss to both freshwater and the coastal zone. Detailed reviews of the extent of, and impacts 
of, diffuse pollutants on the New Zealand aquatic environment have appeared frequently over the last decade as concern 
has increased over the impacts of pastoral agriculture on them (McDowell, 2009; Quinn et al., 2009). This challenge is 
significant. The most recent OECD Environmental Review of New Zealand (OECD, 2007) highlights that water quality in 
lakes and rivers has declined in those areas dominated by pastoral farming and the OECD has recorded the following 
changes in the 15 year period, 1990-2005:

•	 Change in agricultural production: NZ ranked 1st out of 28 OECD countries, with the highest % increase in agri-
cultural production. 

•	 Change in total phosphate fertiliser use: NZ had the 2nd highest % increase in phosphate fertiliser use out of 
29 OECD countries, while 23 countries decreased their P-fertiliser use. 

•	 Change in total nitrogenous fertiliser use: NZ had the highest % increase out of 29 OECD countries, while 21 coun-
tries decreased N-fertiliser use. (The actual net application of N-fertiliser (2.1 tonnes /km2 of agricultural land) 
in NZ is now close to the OECD average of 2.2 tonnes/km2 of agricultural land.)

International and New Zealand-specific experience shows that such changes are likely to be accompanied by increases in 
diffuse pollution (Wilcock, 2009). The New Zealand Office of the Parliamentary Commissioner for the Environment has 
argued for “a paradigm shift in farming practices for New Zealand to become environmentally sustainable”.

Here we outline five major aspects of the diffuse pollution issue that have wide international relevance: 1. Characterisation 
of diffuse pollution and the shift from point to diffuse sources; 2. Pollutant pathways; 3. Attenuation of diffuse pollutants; 
4. Modelling; 5. Managing diffuse pollution.

CHARACTERISATION OF DIFFUSE POLLUTION 

Urban and mining-impacted streams are typically of lowest ‘ecological ‘health’ in New Zealand, as elsewhere, owing to 
severe physical changes, gross sedimentation, and toxic pollution, but a far greater total length of streams in pastoral 
agriculture are moderately to severely impacted. The ‘universal’ diffuse pollutants – fine sediments, pathogens and nutri-
ents – all of which are mobilised by livestock, predominate in waters draining the New Zealand landscape.

Fine sediment mostly affects (i) rivers by reducing water clarity and impacting on primary producers and consumers in 
aquatic food webs, and (ii) coastal areas by reducing water clarity, shoaling by sedimentation and smothering shellfish 
beds. 

Faecal matter (and associated pathogens) affects contact recreation, water supplies and coastal shellfish harvesting from 
commercial, recreational and traditional harvest sites. In a national study of freshwater swimming sites collated by the 
Ministry for the Environment 40% of 280 river sites were found to be non-compliant with guideline values for recreation in 
terms of E. coli (http://www.mfe.govt.nz/environmental-reporting/freshwater/recreational/snapshot/freshwater.html#results). 
Although microbial pollution is of major concern for contact recreation, application of a water quality index for contact recre-
ation to 77 sites in the National Rivers Water Quality Network (NRWQN; Davies-Colley and Ballantine, 2010) suggests that low 
visual clarity limits contact recreation in NZ rivers more commonly than microbial pollution (high E. coli).

In terms of nutrients, New Zealand has a long history of documentation and research on freshwater eutrophication that has 
affected rivers, wetlands, lakes and estuaries (Burns, 1991; Winterbourn, 1991) with significant deviations from OECD 
trends (White, 1983). SPARROW modelling calibrated to the NRWQN dataset (Elliott et al., 2005) suggests that point 
sources account for only 3.2% of the Total N, and 1.8% of the Total P flux to the sea from the New Zealand landmass. 
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Diffuse pollution has probably been present since widespread land clearance for grazing started in the 19th century in 
(originally 80% forested) New Zealand, but has gone largely unrecognised until recently. Over the past four decades or so, 
NZ has been preoccupied with controlling point pollution, with water pollution from diffuse pastoral sources only acknowl-
edged fairly recently – particularly since publication of a landmark paper by Wilcock (1986). Now the gains made from 
investment in wastewater treatment risk being negated by increasing diffuse pollution from expansion and intensification 
of pastoral agriculture (Ballantine and Davies-Colley, 2009; Wilcock, 2009; Quinn, 2009). Diffuse pollution (with a few 
exceptions) seems less amenable than point pollution to control under New Zealand’s (effects-based) environmental legis-
lation, the Resource Management Act of 1991. 

Correlations between land use and river water quality consistently quantify the relationships between water quality and 
land use as shown in Table 1. Visual clarity is negatively impacted by land use and is positively related to % native forest 
in the catchment. Nutrients and E. coli concentrations are all positively related to % pastoral land use in the catchment, 
and negatively to % native forest. 

Table 1. Correlation of river water quality variables (medians for the period 2005-08 from NRWQN) and percent of catchment in 
pastoral, arable and native forest land use types. All correlations are significant at P< 0.05. (From Davies-Colley, 2009.)

Parameter % Pastoral % Arable + Hort. % Native Forest

Visual clarity - 0.45 - 0.24 0.30

Total Nitrogen 0.85 0.45 - 0.39

Total Phosphorus 0.70 0.24 - 0.32

E. coli 0.80 (0.17) - 0.34

Of the pastoral land use category, which makes up 42% of New Zealand’s land cover, dairy farming has the highest diffuse 
pollution footprint with 36.7% of the Total Nitrogen load entering the sea originating from the 6.8% of the land area occu-
pied by dairy farming (Table 2), while ‘other pasture’ (sheep, beef, deer etc) provides 38.9% of the Total Nitrogen from 
31.9% of the land area (Elliott et al., 2005). This is not surprising given that the nitrogen loss rates from dairy farms are 
four times higher than from other pasture (cf. 39 kg/ha/yr compared with 8 kg/ha/yr from sheep and beef farms, and  
5 kg/ha/yr from forest (MAF, 2008; Quinn et al., 2009).

Table 2. Land use area (%) and Total Nitrogen load to the sea as a % of the national total load  
(after Elliott et al., 2005). NA = Not Applicable. Total area of NZ = 263 500 km2; total N load to the coast = 167 700 t/yr.

Pollution Source Land use area % Load to Coast %

Point sources NA 3.2

Dairy 6.8 36.7

Other pasture 31.9 33.3

Trees (Native and plantation forest) 39.2 24.8

Other non pasture (mountains, scrub) 22.1 2.1
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A recent study of 112 currently monitored New Zealand lakes (Verburg et al., 2010) found that 49 were eutrophic or worse 
and 29 were oligotrophic or better. However, bias in the distribution of the monitored lakes was acknowledged in that many 
lakes in natural areas were not monitored. Statistical extrapolation, accounting for this bias, indicated that 32% of all 
3820 NZ lakes of >1 ha in area are eutrophic or worse, while 43% are oligotrophic or better. Of the monitored lakes, 73% 
of those in the eutrophic or worse category were located in predominantly pastoral land use catchments (Verburg et al., 
2010).

Diffuse sources have thus now comprehensively supplanted point sources across the country. For example, at (nitrogen-
limited) Lake Rotorua a sewage discharge was diverted in 1991 with an immediate decline in Total N in the lake, but Total 
Nitrogen levels are now higher than they were in 1991 due to steadily increasing nitrogen loads from catchment streams 
draining pastoral land (Figure 1). 
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Figure 1. Diffuse pollutants continue to increase as point sources decline. At (N-limited) Lake Rotorua the sewage discharge was 
diverted in 1991 (Data from Rutherford, 2003 and unpublished) but diffuse inputs from streams continued to increase.

Management of diffuse pollution relies on the estimation for each catchment of the load that has arisen from human 
activity and is additional to the natural load. We estimate that 75% of diffuse source N & P flux to the sea is from modified 
landscapes, mostly pastoral and, as such, is theoretically manageable while 25% would be “natural”. Lake Taupo, New 
Zealand’s largest lake has a mixed land use catchment with 22% pastoral, 27% as plantation forest and the remaining 
51% as native forest, scrub and mountain vegetation. The manageable loads there of Total N and P are only 40% of the 
natural load as modelled for pre-European times. Nutrient management in the Lake Taupo catchment has been focussed 
only on that 40%.

New Zealand catchment modelling indicates that the manageable load, as a proportion of the total load, varies not only 
with time but with distance downstream in rivers. In the case of the Waikato River, the manageable nitrogen load gradually 
diverges from the ‘natural” load as the river progresses downstream to a distance of ca. 225 km, and then doubles in the 
next 50 km while the “natural” load increases by only 16% (Table 3). The manageable load increase is due to the inflows 
from a major tributary, the Waipa River. The situation for phosphorus is not as clear-cut because the Waipa would have 
provided a significant natural phosphorus load. In this case the manageable P load doubled below the Waipa junction and 
the “natural” load also doubled by 0.5 t P/day (Table 3).
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Table 3. Waikato River natural nutrient loads and anthropogenic (manageable) loads (tonnes/day) vary with distance downstream 
from Lake Taupo (0 km). The “natural load” figures are the modelled load for the 1920s before hydropower development but after 

some limited land use change. 225 km is upstream and 250 km is downstream of the Waipa River inflow

Distance downstream 
(km)

Total Nitrogen load Total Phosphorus load

1920
‘Natural’ 2010 Manageable 1920

‘Natural’ 2010 Manageable

0 1.2 - 0.09 -

75 1.5 3.0 0.2 0.3

170 4.2 6.4 0.4 0.7

225 6.1 9.2 0.51 0.9

Waipa River inflow here

250 7.1 18.4 1.1 1.8

300 10.5 23.1 1.5 2.5

PATHWAYS OF DIFFUSE POLLUTANTS 

Diffuse pollutants move into waters through three main processes: 

i.	 surface runoff as overland from land to water; 

ii.	 livestock direct access to waters (including wetlands and lake margins); 

iii.	 leaching to groundwaters and subsequent re-emergence as springs. 

i. Overland flow is probably the largest source of diffuse pollution in New Zealand and comprises mostly particulate diffuse 
pollutants (fine sediment, microbes and particulate N and P). It is highly flow-dependent as described above, and is mostly 
derived from critical source areas (CSAs) for runoff representing often only a small proportion of a catchment (Pionke et al., 
2000; McDowell et al., 2004). Because surface runoff mainly occurs during and immediately after rainstorms, diffuse pollu-
tion from this pathway tends to correlate positively with stream flow – in sharp contrast to livestock access and groundwater 
seepage (and point source pollution) that tend to be diluted with increasing stream flow. In New Zealand rivers water clarity 
(inversely related to fine sediment) tends to decline with increase in discharge, while microbes, and total nitrogen and 
phosphorus concentrations increase with discharge – broadly consistent with the inference that overland flow is the domi-
nant source of diffuse pollution in this country (Smith et al. 1996, Davies-Colley, 2009). 

In a comparative study of pasture, pine and native forest catchments, Cooper and Thompsen (1988) found that on an areal 
basis, the pasture catchment exported about 15 times more P than either of the forested catchments and about 3 and 10 
times more N than the native and pine catchments respectively. The proportion of TN export that occurred during stormflow 
in the pasture, pine, and native catchments was 90%, 52%, and 20%, respectively and similar proportions occurred for TP 
exports.

In any catchment or farm, identification of Critical Source Areas for priority attention to mitigate or ameliorate pollution in 
runoff is a necessary first step in diffuse pollution control. These areas can then be set aside for management actions that 
reduce pollutant runoff such as minimising fertiliser application or livestock exclusion or reduction. Beneficial Management 
Practices (BMPs) that are most appropriate to overland flow are those that act as ‘filters’ to intercept diffuse pollutants in 
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the surface runoff. These include contour tilling and planting, grassy strips, wetlands and stream-bank vegetation. Other 
BMPs include the use of slow release fertiliser such as rock phosphate that minimises soluble fertiliser loss in rains (Hart 
et al., 2004), and livestock stand-off pads that prevent soil damage from treading compaction during wet weather (Table 4).

ii. Livestock direct access. This widespread pollution source is important in NZ and is a significant area for management 
attention. Direct livestock access to waters or wetlands adversely affects water quality by: 

a.	 Physical damage by livestock treading and browsing to the vegetation, soils and substrates in and on the edges 
of lakes, wetlands and streams, increasing their susceptibility to erosion, sediment loss and pollutant runoff; 

b.	 Direct dung and urine deposits in waters, which add nitrogen, phosphorus and faecal microbes. 

A study in the Sherry River (http://icm.landcareresearch.co.nz/) has shown that river crossings of dairy herds between 
milking parlour and pasture up to four times daily approximately doubles average faecal pollution levels (Davies-Colley et 
al., 2004). The microbial quality of the Sherry River has greatly improved since the fords used for dairy crossings were all 
replaced by bridges, although the river still falls well short of contact recreation guidelines – mainly because dairy cattle 
continue to access unfenced channels from pasture.

Studies of direct pollution by sporadic access of cattle to streams have been conducted in New Zealand. Bagshaw et al. 
(2008) found that beef cattle in hill land spent about 2% of their time in stream channels to which they had unrestricted 
access, and inferred that a proportional amount of faecal deposition would go directly into stream water, with a further 2% 
deposited in the ‘immediate’ riparian zone (from which any rise in stream stage would readily entrain faecal matter). 
Bagshaw and co-workers also studied dairy cow access to unfenced streams (15 separate observational experiments on 
5 different farms) and found that cows spent only about 0.1% of time in the channels, but deposited about 0.5% of faeces 
(Collins et al., 2007). Monitoring of stream water quality upstream and downstream of the dairy paddocks in 10 of the 
15 experiments (Davies-Colley and Nagels, 2008) showed that the stream water was highly polluted with E. coli concentra-
tions up to 30 000 cfu/100 mL. The faecal bacterial yield agreed well with observations that 0.5% of faecal deposits directly 
enter stream water, suggesting a 5-fold amplification of defecation rate water versus land. 

Thus, fencing of stream banks in pastoral landscapes, ideally with a set-back to create a riparian buffer, is increasingly 
recognised as the most important BMP to arrest this pollutant pathway, with bridged stream crossings also important on 
dairy farms where cows move usually twice-daily to milking sheds, often crossing streams.

iii. Nutrients leaching to groundwater and their subsequent emergence in seeps and springs, is a particular issue in New 
Zealand’s alluvial soils and porous volcanic soils where groundwater resources are often significant. This is a particular 
problem for nitrate entering aquifers in aerobic conditions although microbial pollution of groundwaters can also be signif-
icant in the near-field. In the intensively-farmed Waikato region 16% of bores exceed this guideline (Quinn et al., 2009). 
Recently, Hickey and Martin (2009) analysed acute (short-term) chronic (long-term) nitrate toxicity data in order to recom-
mend freshwater guidelines for nitrate concentrations in natural waters. As a result of this analysis recommended guideline 
values for chronic toxicity were: a) 1.0 mg NO3-N L-1 in pristine environments with high biodiversity values; b) 1.7 mg  
NO3-N L-1 in slightly or moderately disturbed systems; and c) 2.4-3.6 mg NO3-N L-1in highly disturbed systems (i.e. with 
measurable degradation).

Of special note in relation to the management of nitrate pollution are the legacy issues that relate to extended residence 
times of polluted groundwater. In the Central North Island, nitrate from groundwater-fed springs and seeps is a major 
contributor to the total nitrogen load of large (nitrogen-limited) lakes. In the Lake Taupo catchment groundwater ages vary 
from 2.5 to 80 years (Morgenstern, 2007) with a mean age of water of 9 streams being 37 years, so the lake now receives 
nitrate from farming activities several decades in the past. The effects of current farming will not show up for several 
decades into the future. The policy response to this legacy of nitrogen in groundwater has been termed “the load to come” 
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(Vant and Smith, 2004). Lake protection and remediation programmes in the Central North Island have been required to 
account for the load to come when calculating nutrient input budgets and time scales of change 

ATTENUATION OF DIFFUSE POLLUTANTS 

Attenuation of pollutants with distance downstream from the source of flow is an important consideration for modelling 
(Rutherford, 1987; Elliott et al., 2005) and management. Attenuation of overland flow takes place on land through natural 
interception mechanisms (and BMPs) as mentioned above and it takes place adjacent to, and in, streams where different 
nutrient attenuating systems have been identified (Downes et al., 1997). These were:

i.	 streams receiving lateral flow where nutrient processing occurred in groundwater and in surface runoff adjacent 
to the stream; 

ii.	 Streams with spring sources where nutrients were attenuated in the stream channel. 

In the first case, ‘Lateral Attenuation’, particulate and dissolved inorganic nutrients are removed when surface and subsur-
face water flows through riparian vegetation before reaching the stream channel. In the second case ‘Instream Attenuation’, 
processes such as plant and microbial uptake (denitrification in the case of nitrate) can remove nutrients from waters 
within the stream channel itself. Other Instream Attenuation processes such as hyporheic exchange, sediment exchange, 
microbial pollutant die-off in sunlit channels, long-term storage of sediments (infilling) and nutrient transformations (i.e. 
from dissolved inorganic nutrients to particulate nutrients and vice versa) have also been demonstrated as important. 
These processes combined reduce fluxes and the concentrations that would otherwise be encountered in downstream water 
bodies. 

i. Lateral attenuation: Attenuation of runoff through riparian vegetation on stream edges has been the subject of long study 
in New Zealand with one of the seminal works being that of McColl (1978). He showed then the value of riparian vegetation 
along pasture streams as nutrient traps for overland flow of phosphorus to stream channels during rain storms. The study 
provided “strong support for the use of buffer strips of vegetation along stream channels as a means of protecting streams 
from phosphorus losses”. 

In a study of faecal coliform attenuation in pasture lands, Collins et al. (2004) found that during large runoff events, and 
where preferential flowpaths occur, buffer strips need to exceed 5 m in length in order to markedly reduce the delivery of 
faecal microbes to waterways, but during low-rates of water application to pastures, riparian buffers trapped >95% of 
E.coli in the runoff. Cooper et al. (1995) provided a note of caution in the long-term sustainability of riparian strips for 
lateral attenuation, suggestion that riparian soils can become saturated with P. The results imply that riparian set-asides 
may lead to the development of a zone likely to supply runoff to the adjacent stream that is depleted in sediment-bound 
nutrients and dissolved N but enriched in dissolved P.

ii. Instream Attenuation of pollutants has been modelled as a first order decay process (see Cooper and Botcher, 1993; 
Hearne and Howard-Williams, 1988; Elliott, 2005) so that downstream concentration Cz = C0 e –Kz, where C0 is the source 
concentration, K is the attenuation coefficient (m-1) and z is distance downstream (m). In the case of nutrients, the down-
stream attenuation coefficient for dissolved nutrients in water (Kw) may also be calculated from Kw=Rw/Fw where Rw is the 
mass of nutrient removed per unit time per meter of stream length and Fw is the nutrient flux (mass per unit time) in the 
suite of equations describing nutrient spiralling (Newbold et al., 1981). Most diffuse pollution occurs in small (low order) 
streams that have the greatest attenuation capability. This is demonstrated by the strong dependence of Kw on stream and 
river discharge (Rutherford et al., 1987; Figure 2). The information suggests that for optimising nutrient attenuation, atten-
tion should be paid to streams that have a Kw of greater than 0.0001/m or > 10% loss of nutrient per km of stream length. 
These conditions are found in streams with a flow rate of < 0.5 m3/s (Figure 2).
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The nutrient attenuation coefficient (Kw) for mid summer periods in the Whangamata Stream in the central North Island was 
shown to vary fifty-fold, in a cyclical manner, from 0.03/m to 1.5/m.over a 30 year period. This reflected changes in 
discharge, in-stream vegetation biomass, stream shade by riparian vegetation, and in-stream plant species composition 
(Howard-Williams and Pickmere, 2010).

In addition to stream attenuation of nutrients there is increasing evidence of high variability in attenuation processes 
operating in groundwaters particularly for nitrate-N. For instance at Lake Rotorua groundwater appears to be well oxygen-
ated (viz., little denitrification) so attenuation of groundwater N is unlikely. By comparison, at Lake Taupo many 
groundwaters are anoxic (Hadfield, 2007) and have low nitrate concentrations with an assumption of high denitrification 
rates on organic-rich layers in the aquifers (Stenger et al., 2009).

Figure 2. (After Rutherford et al., 1987).  
Variation in the downstream attenuation coefficient for dissolved nutrients (Kw) with stream flow

A number of factors affect attenuation (Table 4) and in addition to managing these for nutrient removal, considerable 
advances can be made by maximising attenuation at diffuse pollution source sites on farms. A comprehensive statement 
on the effectiveness of on-farm mitigation strategies for managing contaminant sources was provided by Quinn et al. 
(2009).
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Table 4. Mechanisms that enhance attenuation in streams and prevent nutrient loss from farm soils to waters.

Enhancing attenuation in and near waters Reducing nutrient loss from farms

Riparian strips, Riparian and farm drain management 

Wetland and seep protection Slow release fertilizers

Maximising aerobic-anaerobic interface
for denitrification Nitrification inhibitors

Constructed wetlands Constructed wetlands 

In-channel vegetation

Nutrient budgets, nutrient mapping
Feed pads, herd homes, wintering off-site
Improved weather and climate forecasting
Nutrient trading/capping

MODELLING 

Diffuse pollution modelling in New Zealand has been done through statistical, mechanistic, stochastic and conceptual 
approaches (e.g. Decision Support Systems and Bayesian Belief Networks) and includes several of the models reviewed for 
the EU Water Framework Directive (Yang and Wang, 2009). Statistical modelling includes SPARROW (Alexander et al., 2002) 
which accounts for in-stream attenuation. This has been used to define pollutant loads to the sea across the New Zealand 
landmass (Elliott et al., 2005) and to focus on more detailed catchment understanding. SPARROW forms the core of a 
recent model package (Catchment Land Use for Environmental Sustainability – CLUES); which was specifically designed to 
be used by water managers and combines underlying landuse pollutant spreadsheet approaches such as OVERSEER(TM) 
with SPARROW to relate catchment pollutant loads on a GIS framework (McBride et al., 2008). The resulting package allows 
for a map-based delineation of land uses and provides GIS images of seasonal or annual loads of pollutants through the 
stream network. 

Other catchment models that have been used with success are GLEAMS (and GLEAMSHELL) (Cooper and Bottcher, 1993). 
Catchment nutrient modelling with GLEAMSHELL provided the nutrient inputs to New Zealand’s largest lake, Lake Taupo for 
scenarios that investigated proposals for increased dairy farming in this nitrogen sensitive area. The model, together with 
an in-lake dynamic ecosystem model (Spigel et al., 2001; Hamilton and Wilkins, 2004), resulted in a Policy Response 
(Variation 5 to the Waikato Regional Plan) that limits future land-use intensification in the catchment. This includes a 
nitrogen capping policy that limits inputs to the lake and accounts for “the load to come” of nitrate in groundwater. 

Recently the statistical ROTAN model (Rutherford et al., 2009) has been developed to quantify the role of groundwater lags 
in delaying the response to landuse changes of nitrogen inputs to lakes Rotorua and Taupo. ROTAN is currently being used 
to calculate how quickly lake inputs will decrease if nitrogen exports from land are reduced in different parts of the Lake 
Rotorua catchment – so that the mitigations including land purchase and retirement can be targeted where they will be 
most cost-effective and timely. An empirical approach to modelling diffuse pollution is that of Unwin et al. (2010) who 
make use of the spatial framework tool, the “River Environment Classification” (Snelder and Hughey, 2005) to model water 
quality.

Mechanistic models for exploring microbial diffuse pollution have been reported by Collins and Rutherford (2004). These 
have highlighted the very different ‘microbial regime’ of baseflows compared to (microbially polluted) stormflows when 
microbes are entrained by flood currents and washed into waters with overland flow – resulting in polluted storm plumes 
affecting downstream waters and coasts. A stochastic approach of increasing interest in New Zealand is quantitative 
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microbial risk assessment (QMRA) to investigate health risks to humans of microbial pollution of recreational or drinking 
waters or bivalve shellfish under different pollution scenarios (McBride, 2007).

MANAGING DIFFUSE POLLUTION 

Management of diffuse pollution involves approaches at several levels: reductions of nutrients at source (i.e. by reducing 
animal stocking rates); retiring, or not permitting certain activities on, sensitive land in sensitive catchments and by wide-
spread application of mitigation methods. It is widely accepted that there is no single mitigation option for diffuse pollution 
reduction (e.g. Stevens and Quinton, 2009 and Quinn et al., 2009 for arable and pastoral systems respectively). Diffuse 
pollution management is receiving attention at four levels: i). national government; ii). regional government; iii). rural 
industry promoted standards and iv). community-led initiatives. Several management instruments are currently being 
evaluated involving combinations of the above. Regulating for diffuse pollution is not the single answer, even if this were 
(to become) politically tenable. In the UK, the National Farmers Union rejected regulation as an answer to diffuse pollution 
stressing the need for advice-based voluntary approaches (Whyte, 2004), a sentiment also strongly expressed by the 
various agricultural sector groups in New Zealand where a recent Government panel has recommended a matrix of gover-
nance and management approaches to the problem (Land and Water Forum, 2010). These approaches range in scale from 
national to local in the following sequence: 

•	 defining national objectives based on values setting for water quality; 
•	 establishing limits and standards at regional scales but based on spatial frameworks to account for natural 

landscape and waterway variability; and 
•	 collaborative processes at catchment scales (“integrated catchment management”) that involve both industry 

and local stakeholders. 

Key to this last point is strong rural industry engagement to provide credibility, advice and incentives, as well as the intro-
duction of adaptive management and audited self management as tools for promotion and validation of BMPs. Across all 
these scales in New Zealand are the interests of the indigenous Maori (‘first nation’) people who have traditional obliga-
tions to protect freshwater so as to “leave a worthy inheritance for future generations” (Land and Water Forum, 2010). 
Negotiations on the role of Maori in freshwater management up to and including full co-management of water bodies (e.g. 
Collier et al. 2010) are currently underway. 

Regional governments in New Zealand have been increasingly active in the last decade in promoting water protection. In 
Taranaki the Regional Council provides a riparian planning service “to maintain water quality in the region”.

Since the late 1990s it has:

•	 Prepared (free of charge) more than 2 000 farm riparian management plans, focussed mainly on fencing and 
planting ;

•	 Promoted 500 km of stream fencing and 425 km of stream bank re-vegetation which, when added to existing 
fencing and planting means that 60% of stream bank, on the lowland “ring” plain under a riparian plan, is 
fenced, and 43% is vegetated.;

•	 Supplied 1.5 x106 plants (300 000 plants in 2010 alone) at cost; 
•	 Detected a 30% improvement in stream ecological health using a Stream health Monitoring and Assessment Kit 

(SCHMAK), and in this time no negative trends have been detected in the monitored streams.

In two sensitive lake catchments deemed to be of national significance, Lakes Taupo and Rotorua, the last decade has seen 
national government intervention to assist with lake restoration initiatives that have established nutrient load limits. These 
have been set following extensive scientific consultation advice and modelling in conjunction with broad community 
consultation. Thus, in the case of Lake Taupo, the legislated “Regional Plan Variation 5 (Lake Taupo)” imposes a cap (a 
Nitrogen Discharge Allowance or NDA) on nutrient loads leached from individual farms which is based on the load in their 
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“best” recent farming year. A NDA can be traded between farmers. A 20% reduction in the manageable loads is to be 
achieved over a 10 year period to accommodate the “load to come” through the purchase and retirement of farms by the 
Lake Taupo Protection Trust (www.laketaupoprotectiontrust.org.nz).

In the case of Lake Rotorua, a target of 435 t N/yr has been set for the nitrogen input to the lake – the input during the 
1960s before there was widespread concern about algal blooms in the lake. Currently nitrogen export within the catchment 
totals 825 t N/yr, of which >80% originates from pastoral farming. Streams have a large groundwater component and the 
mean “age” of groundwater ranges from 15 to 110 years which means that even if nitrogen leaching losses from pasture 
were reduced immediately, it would take several decades for the input to the lake to reduce. Internal releases of nutrient 
from the lakebed during summer stratification are also likely to delay lake recovery. Measures are currently being consid-
ered to reduce nitrogen exports and to reduce internal lake loads. 

Significant approaches to water governance at regional and local levels and combining regulation and voluntary action 
have been proposed in the last few years; Regional government initiatives include the Horizons council’s “One Plan” that 
will see the establishment of Water Management Zones with specific controls over landuse intensification of farming 
activities at catchment and sub-catchment scales, and a mix of ‘persuasion, advice and rules to manage water quality 
within the Management Zones’. Using a similar approach, the Canterbury Regional Council’s recent approval of the Canter-
bury Water Management Strategy will see a combination of regulatory action set at regional level, to deal with environmental 
problems complemented with incentive mechanisms that progressively drive efficiency in the use of water and responsible 
land management practices. This will be done through ten Water Management Zones sufficiently large to enable the 
management of surface and groundwater systems to be integrated with the management of the areas where the water is 
used but also small enough to avoid becoming remote from local catchment issues. Water management zones are seen as 
spanning the divide at the right scale between regulation and community and industry voluntary action.

As detailed in the water planning frameworks for many countries, catchments are usually the best spatial management 
unit. In New Zealand, Beneficial Management Practises in dairy farming areas have been quantitatively evaluated over the 
last decade through a set of five “Best Practise Dairy Monitor Catchments”, which demonstrate the efficacy of BMPs 
(Wilcock et al., 2007) in different dairy-dominated catchments in five regions of the country with varied climate and soils. 
In the Whatawhata Hill Country experimental farm, retirement of much riparian and steepland in the Mangaotama Catch-
ment has improved water quality and aquatic ecological health in less than a decade (Dodd et al., 2008), although some 
expected benefits are expected to take longer owing to ‘legacy’ effects to do with nitrogen in groundwater and stored sedi-
ment in streambanks. 

As part of the Primary Sector Growth Partnership in New Zealand, “the fertiliser industry is responsible for meeting its 
commitments to ensuring the sustainable use of freshwater resources in the primary sector. These commitments include: by 
2013 80% or nutrients applied to land nationally are managed through quality assured nutrient budgets and nutrient 
management plans…” (Land and Water Forum, 2010). The dairy industry has signed the voluntary 2003 ‘Dairying and Clean 
Streams Accord’ that had achieved the following by 2008-09: 1. Dairy cattle are excluded from streams, rivers and lakes 
-80%; 2. Regular race crossing points have bridges or culverts -97%; 3. All dairy farms have in place systems to manage 
nutrient inputs and outputs -97%; 4. All dairy farm effluent discharge complies with resource consents and regional plans 
-60%. These data need to be treated with some circumspection as one influential report disputes industry claims about the 
percentage compliance with the “Accord” (Deans and Hackwell, 2008). Whatever the final numbers, the industry intervention 
is producing positive environmental outcomes from existing dairy farms. However, of on-going concern is continuing degra-
dation as a result of conversions from sheep and beef farming to dairying (Environment Waikato, 2008).

Managing diffuse nutrient loads through regulation by setting load limits (nutrient caps) on catchments, and through 
identified nutrient concentration targets (regional planning standards) in downstream waters needs to be directed by 
government (central and regional) regulatory agencies. This should be combined with co-operative approaches with the 
rural industry sectors and rural communities to work through voluntary mechanisms (Codes of Conduct, Audited Self 
Management (ASM) schemes, adaptive management) to implement good management practise.
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FUTURE DIRECTIONS

Further improvement in management of diffuse pollution needs attention by science and by government agencies at several 
scales of policy and regulation, by industry and by communities in catchments. 

Science attention should focus on:

•	 Definition of pollutant pathways,
•	 Understanding of attenuation mechanisms (including for targeting BMPs),
•	 Modelling spatial extent, levels and sources of “manageable loads”, with user accessibility to models fostered to 

maximise information transfer,
•	 Assess effectiveness of BMPs, taking natural spatial variability into account.

Policy, Regulation, incentives and community actions in relation to water resources in New Zealand are currently being 
re-examined by several agencies (Land and Water Forum, 2010). These include: 

•	 National objective setting, including national environmental standards, is needed to ensure consistency of values 
and approaches

•	 Setting of regional standards based on values of receiving waters in a spatial context, and on system time lags. 
Setting limits (and targets if there is a need to claw back diffuse pollution) is currently a mechanism that regula-
tors have to reduce cumulative impacts of landuse and prevent further diffuse pollution at catchment scales.

•	 Work with industry landowners and catchment stakeholders, increasingly in ICM-type frameworks, to promote 
mitigation methods and local-scale management (incentives, BMPs, audited self management, community 
restoration schemes).
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