Impact of Allee effects on the establishment of biocontrol agents

Hester Williams, Ecki Brockerhoff, Sandy Liebhold, Darren Ward
Introduction

Crucial Step: Establishment
Introduction

Crucial Step: Establishment

Factors influencing Establishment

• Biocontrol species characteristics
• Host plant characteristics
• Climate and Habitat
• Time of release
• Allee effects
Introduction

Crucial Step: Establishment

Factors influencing Establishment

- Biocontrol species characteristics
- Host plant characteristics
- Climate and Habitat
- Time of release
- Allee effects
Introduction

Crucial Step: Establishment

Factors influencing Establishment

- Biocontrol species characteristics
- Host plant characteristics
- Climate and Habitat – Mismatch and variability
- Time of release
- Allee effects
Introduction

Crucial Step: Establishment

Factors influencing Establishment

- Biocontrol species characteristics – Reduced Genetic diversity
- Host plant characteristics
- Climate and Habitat – Mismatch and variability
- Time of release
- Allee effects
Introduction

Crucial Step: Establishment

Factors influencing Establishment

• Biocontrol species characteristics – Reduced Genetic diversity
• Host plant characteristics – Insufficient quality (low nitrogen)
• Climate and Habitat – Mismatch and variability
• Time of release
• Allee effects
Introduction

Crucial Step: Establishment

Factors influencing Establishment

- Biocontrol species characteristics – Reduced Genetic diversity
- Host plant characteristics – Insufficient quality
- Climate and Habitat – Mismatch and variability
- Time of release
- **Allee effects**
Introduction: Allee Effects

What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size
Introduction: Allee Effects

What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size

Causes:
- Mate-finding failure
Introduction: Allee Effects

What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size

Causes:
- Mate-finding failure
- Failure to satiate predators
Introduction: Allee Effects

What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size

Causes:
- Mate-finding failure
- Failure to satiate predators
- Inability to overcome host defences
Introduction: Allee Effects

What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size

Causes:
- Mate-finding failure
- Failure to satiate predators
- Inability to overcome host defences
- Reduced thermoregulation
Introduction: Allee Effects

What is the Allee effect?

- Decrease in per capita growth rate with a decrease in population size

Causes:

- Mate-finding failure
- Failure to satiate predators
- Inability to overcome host defences
- Reduced thermoregulation

Typical signs:

- Reduced probability of Establishment at smaller population sizes
What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size

Causes:
- Mate-finding failure
- Failure to satiate predators
- Inability to overcome host defences
- Reduced thermoregulation

Typical signs:
- Reduced probability of Establishment at small population sizes
- Reduced per capita growth rate at small population sizes
Introduction: Allee Effects

What is the Allee effect?
- Decrease in per capita growth rate with a decrease in population size

Causes:
- Mate-finding failure
- Failure to satiate predators
- Inability to overcome host defences
- Reduced thermoregulation

Typical signs:
- Reduced probability of Establishment at small population sizes
- Reduced per capita growth rate at small population sizes
- Threshold below which negative growth rate is experienced
Objectives

• Theoretical population models indicate Allee effect to be a major factor
• Field evidence scarce
Objectives

- Theoretical population models indicate Allee effect to be a major factor
- Field evidence scarce

Invasive Weed: *Tradescantia fluminensis*

Biocontrol agent: *Neolema ogloblini*
Objectives

- Theoretical population models indicate Allee effect to be a major factor
- Field evidence scarce

We asked:
- Allee effect present?

Invasive Weed: *Tradescantia fluminensis*

Biocontrol agent: *Neolema ogloblini*
Objectives

- Theoretical population models indicate Allee effect to be a major factor
- Field evidence scarce

We asked:

- Allee effect present?
- Which driving mechanisms?

Invasive Weed: *Tradescantia fluminensis*

Biocontrol agent: *Neolema ogloblini*
Methods: Detecting Allee effect

- Made several small replicated releases
 - Release sizes: 2, 4, 8, 16, 32, 64
 - 5 replicates per release size
Methods: Detecting Allee effect

- Manipulate initial population size of replicated releases
 - Release sizes: 2, 4, 8, 16, 32, 64
 - 5 replicates per release size

- Evaluated impact of release size on:
 - Probability of establishment
 - Per capita population growth rate
Results: Detecting Allee effect

- Allee effect present
 - Probability of establishment increased with increasing release size

\[X^2 = 2.191; \text{df} = 1.25; P = 0.028 \]
Results: Detecting Allee effect

- Allee effect present
 - Probability of establishment increased with increasing release size
 - Per capita population growth rate increased with increasing release size

\[X^2 = 2.191; df = 1.25; P = 0.028 \]
\[X^2 = 3.369; df = 1.25; P = 0.003 \]
Methods: Determining Driving Mechanism No 1
Methods: Determining Driving Mechanism No 1
Methods: Driving Mechanism No 1

Mate limitation?
Methods: Driving Mechanisms

1) Mate limitation
• Made several small replicated releases
 − Release sizes: 2, 8, 16
 − 6 replicates per release size
 − Used new, unmated adults
1) Mate limitation

- Made several small replicated releases
 - Release sizes: 2, 8, 16
 - 6 replicates per release size
 - Used new, unmated adults

- Evaluated impact of recovered male density on:
 - Mating status of recovered females
Results: Driving Mechanisms

1) Mate limitation

Probability of being mated increased with increasing number of live males recovered

\[X^2 = 2.138; df = 1.49; P = 0.0325 \]
Methods: Driving Mechanism No2
Methods: Driving Mechanism No2
Methods: Driving Mechanism No2

Generalist predation?
Methods: Driving Mechanisms

2) Generalist predation
 • Noted high levels of larval predation during release size field trials
Methods: Driving Mechanisms

2) Generalist predation

- Noted high levels of larval predation during release size field trials

- Predator exclusion field trials
 - Cages:
 - Total exclusion (Closed)
 - Partially open (Sham)
 - Open to predators (Open)
 - Two densities:
 - High (50 eggs)
 - Low (22 eggs)
Results: Driving Mechanisms

2) Generalist Predation

• Proportion of larvae surviving highest in total exclusion cage
2) Generalist Predation

- Proportion of larvae surviving highest in total exclusion cage

- *Tested* larval densities had no significant influence on survival
2) Generalist Predation

- Proportion of larvae surviving highest in total exclusion cage
- *Tested* larval densities had no significant influence on survival
- Additional testing with higher populations is needed
Conclusions

• Establishment of small populations of *N. ogloblini* is affected by Allee effects.
Conclusions

• Establishment of small populations of *N. ogloblini* is affected by Allee effects.

• Preliminary results indicating predation and mate limitation as driving mechanisms.
Conclusions

• Establishment of small populations of *N. ogloblini* is affected by Allee effects.
• Preliminary results indicating predation and mate limitation as driving mechanisms.
• Allee effect potentially impacting establishment and spread of many biocontrol agents.
Thank you

Acknowledgements
• Auckland University
• MPI
• Manaaki Whenua – Landcare Research
• Scion
• USDA Forest Services
• MBIE
• Technical Assistants – Laureline & Anouchka