THE NEW ZEALAND ARABLE INDUSTRY

James P. Millner, Nick R. Roskruge
Institute of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand

ABSTRACT: While a variety of ecosystem services are provided by arable production systems in New Zealand, the majority (>85%) is attributed to food production. The arable industry is centred on the Canterbury Region; production of arable crops in formerly important regions including Manawatu and Southland has declined over the past 20 years. A diverse range of crops are grown including cereals, pulses, herbage seeds and vegetables. Cereals account for most of the area planted in crops each year. In 2012 the total area in cereals (wheat, barley, maize, and oats) was 145 000 hectares producing about 1.1 million tonnes of grain. However, production is not sufficient to meet domestic requirements, requiring ongoing imports of milling wheat and feed grains (wheat, barley and sorghum). More recently, forages supplied to local dairy farmers and vegetable seed produced for export, principally peas, radish and carrot, have become important sources of income; production of pulse crops has declined. Herbage seeds, dominated by perennial ryegrass and white clover, are produced to supply the requirements of New Zealand’s pastoral industries and for export. Vegetable production includes both fresh and processed crops; potatoes, peas and sweetcorn are the major process crops, with significant exports. Onions and buttercup squash are the main fresh crop vegetables. Export earnings from fresh and processed vegetables generated $614 million in 2011. Conversion of arable and mixed-arable farms to dairy is a threat to the industry through reduced economies of scale and loss of infrastructure. The development of large community irrigation schemes has facilitated dairy conversions, particularly in Canterbury. Nutrient loss limits, proposed by many regional councils, suggest that nutrient management is likely to become a challenging issue for many arable farmers, particularly those growing winter vegetables and forage crops for winter grazing of dairy cattle.

Key words: cereals, forage, herbage seeds, oilseeds, outdoor vegetables, pulses, vegetable seeds.

INTRODUCTION

The three major cereal crops – wheat (Triticum spp.), maize (Zea mays), rice (Oryza sativa) – plus potatoes (Solanum tuberosum) contribute about 50% of the human daily energy intake globally (FAO 2008) but reliance on these crops varies with income. People with high incomes tend to consume more energy and protein and acquire a greater proportion of daily intake from animal products, particularly meat and dairy, compared to those with low incomes. Cereals are increasingly used as feed for livestock; about 35–40% of total global cereal production is currently utilised for this purpose (United Nations Environmental Programme 2009). Compound feeds based on cereals, produced for the pork, poultry, beef and dairy industries, account for most of the cereal use in New Zealand. Total compound feed manufactured in New Zealand in 2011 was 921 890 tonnes, of which 582 980 tonnes were cereals, principally wheat (62%), barley (20%) and maize (10%) (New Zealand Feed Manufacturers Association 2012).

The arable industry in New Zealand is primarily geared to supplying the domestic requirements for cereals used in the milling, brewing and animal feed industries, as well as outdoor vegetables and herbage seed production. Domestic production of most arable crops is tiny by global standards; New Zealand 2012 wheat production was less than 0.07% of global wheat production (FAO 2012a). New Zealand does not produce sufficient cereal tonnages to meet its requirements, consequently significant imports of milling wheat and feed grains occur every year, mostly from Australia. Despite cereal yields being among the highest in the world (FAO 2012b) New Zealand cereal growers are not internationally competitive. The reasons for this include small-scale production and high internal transport costs. For example the average Australian grower (grain and grain-mixed-livestock farmers) plants about 500 hectares in wheat (Australian Bureau of Statistics 2012), whereas New Zealand growers typically plant <100 hectares (Ministry for Primary Industries 2012a). The cost of transporting grain from Canterbury to mills in Auckland ($80 t⁻¹) is more than the cost of shipping grain from Sydney, Australia ($50 t⁻¹), and similar to the cost of transporting grain from the west coast of the United States to Auckland mills ($83 t⁻¹) (United Wheat Growers 2012). There are, however, significant exports of processed vegetables, vegetable and herbage seeds (Ministry for Primary Industries 2012a). More recently the provision of forage, including pasture, cereal and brassica forage crops and cereal silage for the dairy industry, has become an important activity.

New Zealand arable production is centred on the Canterbury Region although significant production also occurs in the Manawatu-Wanganui, Hawke’s Bay, Gisborne, Bay of Plenty and Waikato regions. In 2011, 88% and 65% of the total wheat and barley areas, respectively, were planted in Canterbury, but maize grain production is largely confined to North Island regions (Statistics New Zealand 2012a). Dominance of Canterbury in the herbage and vegetable seed industry is even greater; about 90% of production is based there (Hampton et al. 2012b).

Arable crop production is dominated by properties categorised as ‘arable’, i.e. where the majority of income is obtained from the sale of grains and seeds; and on properties where various livestock enterprises, mostly sheep, are combined with arable crops but where most income is obtained from livestock, these properties are categorised as ‘mixed livestock’ (hereafter mixed arable) (Statistics New Zealand 2008a). Arable farms are generally characterised by the wide variety of crops produced. For example, the Canterbury model arable farm produces cereals, grass, clover and vegetable seeds, process vegetables and silage crops (Ministry for Primary Industries 2012a). Cereals occupy the largest area on these farms but seed production is also a major activity and an important source of income. Diversification into dairy support is another feature of recent changes in this sector (Table 1).

There has been a decline in the number of mixed arable farms in New Zealand, particularly in Southland, Otago, Canterbury and Manawatu-Wanganui, a consequence of the falling profit-
ability of sheep farming through the 1990s and the profitability of dairy relative to other land use options on arable land (Dyes et al. 2010). Consequently many arable and mixed arable farms have converted to dairy (Beck 2012) while many of those farms that were predominantly arable (Canterbury) responded to low sheep prices by reducing sheep numbers and expanding crop production. This movement is reflected in a fall in sheep and an increase in dairy cattle numbers in these regions over this time (Statistics New Zealand 2012b). In Canterbury sheep numbers have continued to decline and dairy cattle increase (Statistics New Zealand 2012a). There was a sharp fall in the estimated production. This movement is reflected in a fall in wheat prices in New Zealand and a move away from wheat production. In the period following deregulation the quality of milling wheat destined for bread production increased greatly. This resulted from specific cultivation of good quality cultivars, assessed by means of a test bake score incorporating loaf volume and crumb texture, price premiums for high grain protein content and required standards for other quality traits, such as sprouting damage, set by mills (Lindley 1990).

Much of the decline in the area planted in wheat has occurred because of a decline in wheat area in secondary regions, particularly Southland, Otago and Manawatu-Wanganui. In 2010 these regions accounted for 4.7%, 4.5% and 1.5% of the total wheat area.
respectively with 88% of the total planted in Canterbury (Table 3) whereas in 1980 these regions accounted for 24.6%, 13.4% and 5.1% of the total area respectively while Canterbury contributed 53.6% (Department of Statistics 1983). The closure of the flour mill in Manawatu and the oat mill in Southland (MAF 2000) in the early 2000s contributed to the decline in wheat production and a general decline in confidence in the arable industry in those regions.

In contrast wheat yields have increased (Figure 1), partially compensating for the decline in area. For example, the mean wheat yield, calculated from the total area planted and total production from 1990 to 1996, was 5.1 t ha⁻¹ (Statistics New Zealand 1997). The increased use of high-yielding winter feed wheat cultivars has helped lift mean yields (Foundation for Arable Research 2012a, b) as has increased use of inputs including irrigation, nitrogen fertiliser, pesticides and growth regulators (Foundation for Arable Research 2011a).

Wheat production generally falls into two main categories: wheat for milling (predominantly bread baking) and feed wheat used in the livestock industries. Milling wheat used for bread generally has hard grain texture and high protein content, particularly gluten, whereas milling wheat used for biscuits and cakes has soft grain and low protein content. Prior to deregulation of the flour industry in New Zealand (1983) milling wheat was mainly grown for the flour mill in Manawatu and the oat mill in Southland (MAF 2000) and a general decline in confidence in the arable industry in those regions.

Fluctuation in the area planted in wheat each year often reflects wheat prices and prices of alternative crops. The price of both feed wheat and milling wheat is influenced by several factors, principally the international price, Canterbury production and internal transport costs. For example the price for imported Australian hard milling wheat (11.5% protein) landed at Auckland for the week beginning 14 January 2013 was NZS$543 per tonne. The cost of rail transport from Ashburton (Canterbury) to Auckland is about NZS$80 per tonne. During the same week the value of non-contracted milling wheat (12.5% protein) delivered to Christchurch was quoted at NZS$415 per tonne (United Wheat Growers 2012).

Fluctuation in the area planted in wheat each year often reflects wheat prices and prices of alternative crops. The price of both feed wheat and milling wheat is influenced by several factors, principally the international price, Canterbury production and internal transport costs. For example the price for imported Australian hard milling wheat (11.5% protein) landed at Auckland for the week beginning 14 January 2013 was NZS$543 per tonne. The cost of rail transport from Ashburton (Canterbury) to Auckland is about NZS$80 per tonne. During the same week the value of non-contracted milling wheat (12.5% protein) delivered to Christchurch was quoted at NZS$415 per tonne (United Wheat Growers 2012).

Barley

The total area planted in barley (*Hordeum vulgare*) nationally is generally greater than wheat but total production is similar, a consequence of lower yields. Production over the last 10 years has fluctuated between 226 000 (2004) and 435 733 tonnes (2012) (Table 2). The area planted in barley has declined from a peak of over 152 000 hectares in 1985 when New Zealand was exporting barley (Statistics New Zealand 2012b); exports that year peaked at 298 000 tonnes (Dunbier and Bezar 1996). The decline in area planted in barley and the annual fluctuations have both been influenced by the same factors affecting the wheat area, principally prices offered for barley relative to other crops, the decline of the sheep industry and the expansion of the dairy industry, particularly in Canterbury (Statistics New Zealand 2012a). However, a significant area of barley is still planted in the North Island, mostly in the Manawatu-Wanganui and Hawke’s Bay regions (Table 3), a significant proportion of which is malting barley. Barley yields have not increased at the same rate as wheat yields (Figure 1). Reasons for this may include a higher proportion of barley being grown outside Canterbury over time compared to wheat; Canterbury generally achieves higher cereal yields than other regions (Statistics New Zealand 2012a). Barley breeding has been significantly reduced in New Zealand, in contrast to the situation with wheat. Comparison of the origin of cultivars evaluated in the spring wheat and barley 2011/12 cultivar performance trials reveals that for spring wheat 2/3rds of the cultivars evaluated (9 total) were of New Zealand origin (Plant and Food Research Ltd; PGG Wrightson) whereas none of the barley cultivars appeared to be of New Zealand origin (Foundation for Arable Research, 2012c).

TABLE 3 Wheat, barley and maize grain area harvested (ha) by region, 2009–2011

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northland</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>300</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Waikato</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>600</td>
<td>-</td>
<td>400</td>
<td>5400</td>
<td>3700</td>
<td>4100</td>
</tr>
<tr>
<td>Bay of Plenty</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2800</td>
<td>3600</td>
<td>2600</td>
</tr>
<tr>
<td>Gisborne</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>3700</td>
<td>3000</td>
<td>3600</td>
</tr>
<tr>
<td>Hawke’s Bay</td>
<td>600</td>
<td>-</td>
<td>400</td>
<td>-</td>
<td>1800</td>
<td>2300</td>
<td>3600</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>Manawatu-Wanganui</td>
<td>2000</td>
<td>700</td>
<td>900</td>
<td>7400</td>
<td>3800</td>
<td>5100</td>
<td>-</td>
<td>2300</td>
<td>2700</td>
</tr>
<tr>
<td>Marlborough</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>800</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Canterbury</td>
<td>46 900</td>
<td>48 000</td>
<td>46 000</td>
<td>45 000</td>
<td>35 300</td>
<td>42 300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otago</td>
<td>1700</td>
<td>2500</td>
<td>2100</td>
<td>-</td>
<td>4300</td>
<td>6100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Southland</td>
<td>-</td>
<td>2600</td>
<td>2300</td>
<td>4700</td>
<td>4600</td>
<td>5800</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* = Confidential or suppressed
Barley is primarily used as a feed grain in New Zealand; in 2011, 114,282 tonnes of barley went into the manufacture of compound feed, 86% of which was produced domestically (New Zealand Feed Manufacturers Association 2012). A large amount of feed barley is also sold directly to end-users, mainly pig farms in Canterbury – which carry over 50% of the national pig herd (Statistics New Zealand 2012a).

A significant amount of barley is utilised in the malting industry, estimated to be 16% and 15% of total barley production in 2011 and 2012 respectively (Foundation for Arable Research 2012a). The only large-scale malting plant in New Zealand is located in Marton (Rangitikei District), owned and operated by Malteurop, with a capacity of 43,000 tonnes of malt annually (Malteurop 2012). While much of the barley grown in the area surrounding the plant is malting barley, most malting barley is produced in the Ashburton area (Malteurop 2012). Malting barley cultivars yield less than feed cultivars and have more stringent quality requirements (Foundation for Arable Research 2012b); consequently malting barley attracts a premium over feed barley to incentivise growers: in January 2013 the contract price per tonne for feed barley (delivered Canterbury rail) in Canterbury was $376 whereas the malting barley price (delivered Ashburton) was $455 (United Wheat Growers 2012). Malting barley is required to achieve specific standards that include germination (>95%), grain protein content (<2%) and maximum screenings criteria (de Ruiter and Haselmore 1996) whereas there are no limits on grain nitrogen content for feed barley and increased tolerances for screenings; grain bulk density standards (kg hL⁻¹; 1 hectarolitre = 1000 litres) are also set for feed barley.

Maize

The maize (Zea mays) grain industry is almost entirely based in the North Island (Table 3); important regions include Waikato, Bay of Plenty, Gisborne, Hawke’s Bay and Manawatu-Wanganui. Maize grain is a marginal crop in the South Island because of insufficient thermal time to allow crops to mature and the increased risk of frost (Wilson et al. 1994). These constraints also limit maize production in higher altitude sites in the North Island. Total area and production of maize grain has been relatively stable over the past 10 years (Table 2) averaging about 19,000 hectares and 212,000 tonnes respectively. Maize grain is used as a feed for monogastric (poultry and pigs) and ruminant animals (deer and dairy cattle). Significant end-users include compound feed manufacturers (New Zealand Feed Manufacturers Association 2012) but a significant amount (estimated at 65% of total production in 2010) of maize feed grain may be sold to other farmers (unprocessed) through more direct channels (Sanderson et al. 2012).

A significant amount of domestic maize grain is channelled through the milling industry and maize grain for milling is imported in most years (Booker 2009). Products from dry milling include maize meal, polenta and grits; products from wet milling include starch and maize oil (Chappell 1985). New Zealand production may not be sufficient to meet domestic requirements in some years, requiring imports of maize or maize substitutes. However, imports vary according to domestic production and the price of alternative grains, particularly wheat and sorghum. Sorghum imports have trended up since the early 2000s but spiked in 2008 when 166,790 tonnes were imported (Statistics New Zealand 2012c) possibly because of low domestic maize grain production in 2007 (Table 2) and high international maize prices (FAO 2012c). Sorghum is nutritionally similar to maize when fed to pigs (New Zealand Pork 2008). In 2011 there were no maize imports for feed manufacture (New Zealand Feed Manufacturers Association 2012).

Whereas the area planted in maize for grain has remained static, the area planted for silage has increased over the last 20 years; estimates of total production suggest that the area planted for silage is almost double that for grain. In 2002 16,917 hectares were planted in maize silage (Statistics New Zealand 2003), doubling (32,459 ha) in 2007 (Statistics New Zealand 2008b) and in 2012 the estimated area was 49,457 hectares (Foundation for Arable Research 2012d). The driver for the increased area in maize silage is higher profitability for silage compared with grain (MAF 2009) with additional benefits including earlier cash flow and reduced climatic risk. In 2007 about 9% of the maize silage area was in Canterbury (Statistics New Zealand 2008b). Maize silage is grown on farm by many dairy farmers but is also grown as a cash crop and traded by arable farmers. Estimates of the proportion of maize silage produced on arable farms in different regions range from 81% in Canterbury to 36% and 37% in the Waikato and Bay of Plenty respectively (Booker 2009).

Maize silage requires less thermal time to achieve harvest maturity than maize grain and the availability of early-maturing hybrids in the 1990s has allowed maize crops to be grown for silage in Canterbury, albeit mainly confined to the lower altitude areas near the coast. The risk of spring frosts killing or severely damaging early-planted maize crops if past the six-leaf stage (when the growing point is above ground) and autumn frosts killing late-planted crops means that selection of hybrid and planting date are critical to minimise climatic risk (Foundation for Arable Research 2008a). The use of plastic mulch to raise soil temperatures during the establishment period has been investigated in Canterbury. This would potentially allow maize to be grown at more southern latitudes and at higher elevations in the region and allow the use of later maturing higher yielding hybrids in areas currently able to grow maize silage (Fletcher et al. 2008).

Oats

Oats (Avena sativa) are used in the milling industry for products such as breakfast cereals and snack foods and in the equine industry as feed. Most oats (about 60% of area planted) are now used in the milling industry (Greer 2010) a great increase since the 1990s when about 20% of the total area planted was milling oats (Dunbier and Bezar 1996). The proportional decline in the feed oat crop is probably associated with a marked drop in the horse population, which declined from 94,000 in 1990 to 57,000 in 2011 (Statistics New Zealand 2012b). In 2003–2012 the mean area planted annually was 6490 hectares (Table 2), less than half that of the previous decade (13,800 ha) (Statistics New Zealand 2011). Production is almost entirely confined to the South Island and is dominated by Canterbury and Southland with 50% and 30% of the area harvested in 2007 respectively (Statistics New Zealand 2008b). Yields have increased slightly; mean yield in 2003–2012 was 4.6 t ha⁻¹ whereas that in the previous decade was 4.0 t ha⁻¹. Southland has traditionally produced the highest yields in New Zealand (Dunbier and Bezar 1996). Production of forage oats for green feed and silage is an important activity on many arable properties, particularly those supplying forage to the local dairy industry (MAF 2011).

Other cereal crops

Small-scale production of minor cereals, including ryecorn (Secale cereale) and Triticale (×Triticosecale), occurs, mostly in Canterbury. Much is used to produce seed for forage crops of
these species but some may be milled to produce flour used in speciality loaves including mixed grain and rye breads.

Pulse crops

The main pulse crop in New Zealand is field peas (Pisum sativum); field beans (Phaseolus vulgaris) and lentils (Lens culinaris) are also produced. Lupins (Lupinus angustifolius and L. albus) and tick beans (Vicia faba) have been produced in the past (Claridge 1972). The area planted in peas has declined greatly from its peak (1987) when over 37,000 hectares were grown. In 2007, 80% of the total pea crop (6,273 ha) was planted in Canterbury (Statistics New Zealand 2008b), but this figure also includes field peas planted for seed. A significant area is planted in the Wairarapa (529 ha in 2007), most of which was for seed multiplication and export (Statistics New Zealand 2008b). Mean yields range between 2.5 and 3.5 t ha⁻¹ in most seasons and have changed little over the last 30 years (Statistics New Zealand 2012b).

Production of field peas includes maple, white, blue and marrowfat peas. Most of the crop was exported, with domestic consumption primarily being export off-grades (Dunbier and Bezar 1996) used in the compound feed industry as a source of protein (22–24%) with high lysine content (Savage 1989), an essential amino acid for pigs and poultry. (Compound feeds based on maize are inherently low in lysine.) In 2010 and 2011, 2,200 and 2,400 tonnes of peas, respectively, were used in the compound feed industry (New Zealand Feed Manufacturers Association 2012), well below the quantities used historically (Dunbier and Bezar 1996). Alternative sources of plant-based proteins for the feed industry include soy beans, which are increasingly used for this purpose (Foundation for Arable Research 2007a); over 100,000 tonnes of soy meal (by-product of soy oil extraction process) was imported for the feed industry in 2010 and 2011 (New Zealand Feed Manufacturers Association 2012). For most of the last 10 years the international soybean meal (48% protein) price has been well under US$400 t⁻¹ (FOB) (Indexmundi 2013). At these levels feed manufacturers in New Zealand have been unable to offer prices for field peas that are sufficiently profitable to encourage arable farmers to grow the crop.

The benefits of peas (and other pulse crops) in arable crop rotations include control of soil-borne cereal fungal diseases such as take-all (Gaemannomyces graminis) and biological nitrogen fixation. The principal reason for the decline in field pea production is low profitability. In Canterbury, for example, the gross margins for field peas during the 1990s were generally half those of the cereals and remain uncompetitive (Canterbury Agriculture 2000). Declining interest in growing field peas resulted in the formation of the Pea Industry Development Group in 2002, which included grower, research and industry organisations (Pea Industry Development Group 2008). With funding from the Ministry of Agriculture and Forestry’s Sustainable Farming fund this group has attempted to mitigate some of the constraints to increased profitability, principally low yields, and to promote the benefits of peas as a break crop.

The most important pulse crop globally is soybean (Glycine max) but there is currently negligible production in New Zealand. Their thermal time requirements mean that they are a marginal crop in most regions of New Zealand. Soybeans have occasionally been assessed locally, particularly when earlier maturing cultivars became available; yields in recent trials have ranged from 2.5 to over 6.0 t ha⁻¹ (Foundation for Arable Research 2006), insufficient to make soybeans an economically viable.

Oil seeds

Traditionally linseed (Linum usitatissimum) was the main oilseed crop in New Zealand with production centred in South Canterbury. The oil was extracted for use in a range of industrial processes including manufacture of paint, furniture varnish and linoleum (Claridge 1972). Today a small area of linseed is grown in Canterbury but end uses are typically culinary, for example whole linseed is often added to European style breads but some oil may still be used for industrial purposes. Unless there is a return to the use of floor coverings made from natural components it is unlikely that demand will increase greatly. The nutritional benefit of linseed in bread (and other foods) is its high alpha-linolenic acid content (a type of Omega-3 fatty acid). Oil content in the seeds is about 40% with 60% of total fatty acids being linolenic acid. New oilseed crops, albeit produced on a very small scale, include borage (Borago officinalis), which produces oil with a high gamma-linolenic acid content, used in the dietary supplement industry (Foundation for Arable Research 2007b).

Oilseed rape (Brassica napus) is the most important oilseed crop in New Zealand. Its uses include cooking oil, the manufacture of spreads and dressings, and biodiesel (biodiesel). The oil content of the seeds is about 40% (Claridge 1972). Rapeseed oil differs in composition; oil destined for human consumption needs to be low in erucic acid and glucosinolates and preferably high in oleic acid whereas oil destined for biofuel is typically high in erucic acid. Production for the culinary industry began in the 1970s but ceased in 1999. Recent interest in oilseed rape is mostly based on its potential as biofuel and resulted from New Zealand’s commitment to reduce carbon emissions under the Kyoto Protocol and the subsequent establishment of the emissions trading scheme. Estimated area planted in 2008 was about 4,500 hectares, mostly in Canterbury but with limited production in Mid-Canterbury (Johnson and Gallacher 2008). The reduced area planted in Mid-Canterbury resulted from a voluntary agreement between major oilseed rape production companies and the brassica seed industry, which is largely based in Mid-Canterbury, to minimise the risk of cross pollination. Rapeseed oil destined for the food industry can be recycled and after processing used as biodiesel, but oil can be processed directly for this purpose. Estimates of the portion of New Zealand’s annual diesel fuel requirement able to be replaced by current oilseed rape production together with recycled oil are 2.5–3.0% (Biodiesel New Zealand 2013). However, rapeseed oil faces headwinds as a biofuel. It has a moderate energy ratio (ratio of energy consumed during production to energy produced) of 3 and the value of carbon credits in the New Zealand Emissions Trading Scheme has dropped from over $21 per tonne shortly after the introduction of a carbon market in 2011 to less than $3 by early 2013 (OM Financial 2013). For biodiesel to compete with petroleum-based diesel the price of crude oil will need to rise and the value of carbon will need to be high (Foundation for Arable Research 2006).

SEEDS FOR SOWING

The seed industry produces seeds for both domestic use and export. Small areas of cereal and forage brassica seed crops are grown primarily for domestic use (Table 4). Some importation, multiplication and re-export of cereal seed is undertaken for Northern Hemisphere plant breeders. The domestic market is also important for forage grasses and legumes but a large proportion of total production is exported. Seed of many different vegetable crops is produced on a small scale to meet domestic requirements
but there is a significant export industry for a small number of species.

Herbage

Herbage seed production is dominated by perennial ryegrass (*Lolium perenne*), Italian ryegrass (*L. multiflorum*) and white clover (*Trifolium repens*) – a long-term feature of the industry (Pyke et al. 2004). The area of most herbage species entered into the New Zealand Seed Certification Scheme (Table 4) typically varies in response to prices; overseas prices dominate the pricing expectations in the industry for these species because over 50% of production is exported in most years (Statistics New Zealand 2012c), also a long-term feature of the industry (Rolston et al. 1990). The areas in Table 4 understate the total area for these species because of the production of uncertified seed. In 2011 this was estimated to be 33% and 21% of total production respectively for ryegrass and white clover (Sanderson et al. 2012).

Ryegrass seed is mainly exported to Australia and South America and white clover to Europe (Pyke et al. 2004). Over 90% of the herbage seed area harvested annually is in Canterbury (Statistics New Zealand 2008b). Marlborough is also an important region, mostly producing lucerne (*Medicago sativa*) seed.

There has been a proliferation of cultivars for both ryegrass and white clover (AssureQuality 2012). Implications for white clover seed producers in particular include ensuring paddock isolation distances are maintained and the appropriate rotation interval if a change of cultivars is required in any paddock (Pyke et al. 2004). The driver for this change has been the introduction of proprietary cultivars and the gradual decline in importance of public cultivars (Mather et al. 1995).

There has been a decline in the herbage seed area harvested annually (White 1990) particularly white clover (Pyke et al. 2004). However, reduction in total production has been proportionately lower especially for ryegrass (Hampton et al. 2012b), a consequence of significant increases in ryegrass seed yields resulting from improved agronomic practices including the routine use of plant growth regulators (trinexapac-ethyl) and fungicides (Pyke et al. 2004; Rolston et al. 2004). In contrast white clover seed yields are less responsive to management and have not increased to the same extent. Mean seed yields for ryegrass and white clover have increased over the past decade or so (from 585 kg ha⁻¹ and 230 kg ha⁻¹ respectively; Rolston and Clifford 1989) to 1.46 and 2.26 t ha⁻¹ for ryegrass and 363 and 564 kg ha⁻¹ for white clover respectively in 2010 and 2011 (AssureQuality 2012; Hampton et al. 2012b). The variation in seed yield in these two seasons highlights the vulnerability of herbage seed production to adverse weather (MAF 2011).

Exports of ryegrasses and white clover seeds were worth $79.5 million in 2012, slightly higher than in previous years (Statistics New Zealand 2012c), an important source of income for arable farmers. However, the greatest contribution herbage seed producers make to the New Zealand economy is through provision of high quality, genetically improved herbage seed required by the pastoral industries. The potential value of different pasture renewal scenarios in New Zealand was estimated in 2007 (Sanderson and Webster 2009); increasing annual pasture renewal from 2% currently to 8% by the sheep and beef sector and 6.1% currently to 12% by the dairy sector, using locally produced herbage seeds, was estimated to increase total gross domestic product by $3.2 billion annually. This figure appears to be excessive. The study assumes no failures after sowing new pasture and cites studies with limited post-establishment data. A large study evaluating the performance of 10 ryegrass cultivars in different regions found that pasture production declined from year 1 to year 3 in four out of five sites; production declines ranged from 0.8 t DM ha⁻¹ in Canterbury to 5.3 t DM ha⁻¹ in Waikato (Kerr

Table 4: Areas (ha) entered into the New Zealand Seed Certification Scheme since 2005

<table>
<thead>
<tr>
<th>Seed type</th>
<th>2005</th>
<th>2008</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>510</td>
<td>842</td>
<td>648</td>
</tr>
<tr>
<td>Barley</td>
<td>997</td>
<td>1345</td>
<td>995</td>
</tr>
<tr>
<td>Maize</td>
<td>25</td>
<td>185</td>
<td>293</td>
</tr>
<tr>
<td>Oats</td>
<td>226</td>
<td>387</td>
<td>445</td>
</tr>
<tr>
<td>Ryecorn</td>
<td>21</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Triticale</td>
<td>50</td>
<td>358</td>
<td>67</td>
</tr>
<tr>
<td>Grasses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perennial ryegrass</td>
<td>10 704</td>
<td>14 463</td>
<td>7568</td>
</tr>
<tr>
<td>Italian ryegrass</td>
<td>4049</td>
<td>5544</td>
<td>5140</td>
</tr>
<tr>
<td>Hybrid ryegrass</td>
<td>2081</td>
<td>1624</td>
<td>1220</td>
</tr>
<tr>
<td>Tall fescue</td>
<td>892</td>
<td>749</td>
<td>518</td>
</tr>
<tr>
<td>Cocksfoot</td>
<td>663</td>
<td>958</td>
<td>1024</td>
</tr>
<tr>
<td>Browntop</td>
<td>387</td>
<td>567</td>
<td>468</td>
</tr>
<tr>
<td>Others</td>
<td>1532</td>
<td>1050</td>
<td>468</td>
</tr>
<tr>
<td>Forage legumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White clover</td>
<td>10 160</td>
<td>5915</td>
<td>6637</td>
</tr>
<tr>
<td>Red clover</td>
<td>666</td>
<td>380</td>
<td>554</td>
</tr>
<tr>
<td>Others</td>
<td>281</td>
<td>178</td>
<td>134</td>
</tr>
<tr>
<td>Brassicas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kale</td>
<td>143</td>
<td>411</td>
<td>501</td>
</tr>
<tr>
<td>Rape</td>
<td>888</td>
<td>569</td>
<td>483</td>
</tr>
<tr>
<td>Swede</td>
<td>41</td>
<td>89</td>
<td>26</td>
</tr>
<tr>
<td>Turnip</td>
<td>197</td>
<td>316</td>
<td>201</td>
</tr>
<tr>
<td>Other</td>
<td>32</td>
<td>73</td>
<td>0</td>
</tr>
</tbody>
</table>

Excludes: peas, linseed, cannabis, chicory, fodder radish, phacelia, plantain, white mustard, brown mustard, crambe and cabbage.

References

- Pyke et al. 2004
- Rolston et al. 1990
- Statistics New Zealand 2008b
- Sanderson et al. 2012
- AssureQuality 2012
- Hampton et al. 2012b
- Kerr

107
et al. 2012). While there is little doubt that new pasture will produce more than degraded pasture, current evidence suggests that there is no production advantage from replacing stable old pasture (Taylor et al. 2012).

The delivery of novel endophytes (Neotyphodium lolii) able to provide biological control of important ryegrass pests – porina (Wiseana cervinata), black beetle (Heteronychus arator) and argentine stem weevil (Listronotus bonariensis) (Popay and Thom 2009) – while reducing the adverse effects on livestock performance (Fletcher and Sutherland 2009) is also an important benefit of the herbage seed industry. However, the use of fungicides on ryegrass seed crops to control stem rust (Puccinia graminis) and blind seed (Gloeotinia temulenta) (reduces seed germination) has been shown to reduce the rate of endophyte transmission to seeds (Chynoweth et al. 2012) potentially reducing resistance to insects and sward persistence in new pasture. This suggests possible conflict between seed yields, seed germination and endophyte transmission in ryegrass seed crops.

Vegetables

New Zealand produces vegetable seeds for domestic use and for export, notably field peas (Pisum sativum), radish (Raphanus sativus) and hybrid carrots (Daucus carota). The total value of vegetable seed exports (excluding peas) in 2012 was $70 million, the greatest contribution coming from radish ($26m) and hybrid carrot ($19m) (Statistics New Zealand 2012c). These returns resulted from exports of about 3000 tonnes of radish but only 411 tonnes of hybrid carrot seed, highlighting the per unit value of the latter crop in particular. New Zealand is now one of the major producers of hybrid carrot seed. Vegetable seeds are mostly exported to the Asia-Pacific zone with some exported to Europe, particularly hybrid carrot seed (McKay 2008). The development of the export sector has occurred over about the last 20 years and is a result of New Zealand’s latitude (similar to that of large Northern Hemisphere producers) and the requirement for contra

<table>
<thead>
<tr>
<th>Crop</th>
<th>2000</th>
<th>2009</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onions</td>
<td>-</td>
<td>4510</td>
<td>5140</td>
<td>5703</td>
</tr>
<tr>
<td>Potatoes</td>
<td>-</td>
<td>11390</td>
<td>10720</td>
<td>11329</td>
</tr>
<tr>
<td>Buttercup squash</td>
<td>6713</td>
<td>6825</td>
<td>6467</td>
<td>6449</td>
</tr>
<tr>
<td>Peas</td>
<td>7570</td>
<td>5986</td>
<td>6232</td>
<td>6431</td>
</tr>
<tr>
<td>Beans</td>
<td>773</td>
<td>736</td>
<td>1060</td>
<td>-</td>
</tr>
<tr>
<td>Sweetcorn</td>
<td>6380</td>
<td>5059</td>
<td>3558</td>
<td>4024</td>
</tr>
</tbody>
</table>

- = Confidential or suppressed

seasonal multiplication of seed lines by many large Northern Hemisphere based seed companies. The availability of irrigation, the expertise of arable farmers and the presence of efficient seed processing and testing facilities are also key components of this industry (McKay 2008). About 75% of the total area in vegetable seed crops harvested in 2007 (7330 ha) was in Canterbury (Statistics New Zealand 2008b).

OUTDOOR VEGETABLES

New Zealand has a considerable area of land under arable production aligned to the vegetable sector including the production of vegetable seed, processed and fresh vegetables for both the domestic and export markets. Exports of fresh and processed (mostly frozen) vegetables earned $614 million in the year to December 2011 (Statistics New Zealand 2012c). Of this $270 million came from fresh vegetables with processed vegetables (frozen and dried) generating $344 million. Onions (Allium cepa; $110m) and buttercup squash (Cucurbita maxima; $64m) dominate fresh vegetable exports; sweetcorn (Zea mays; $24m), potato fries (Solanum tuberosum; $81m) and peas (Pisum sativum; $51m) dominate the processed vegetable sector. Onions, buttercup squash and potatoes also dominate the area of fresh vegetables grown for the local market. Additional crops produced on arable farms for the local fresh market include pumpkin and butternut (Cucurbita maxima), kumara (Ipomoea batatas), beans (Phaseolus vulgaris) and outdoor tomatoes (Solanum lycopersicum); beetroot (Beta vulgaris) is grown for processing and export, mostly to Australia. Exports of processed vegetables are forecast to decline in the immediate future; drivers for this include exchange rate pressures and competition for land in key regions.

The area planted in vegetable crops fluctuates from year to year (Table 5) (Statistics New Zealand 2012b). For example, sweetcorn area declined by 37% between 2009 and 2012, reflecting reduced demand experienced by processing companies, whereas the area in onions increased by 21% over this time. Production changes may be attributed to a number of reasons specific to different crops, including biological and economic factors in New Zealand and overseas. Examples of biological factors include the recent introduction of the tomato potato psyllid (TPP; Bactericera cockerelli) and the subsequent spread of the Candidatus liberibacter bacterium (Ministry for Primary Industries 2013a), which has increased potato production costs, reducing profitability, resulting in small growers exiting production, contributing to the long-term trend of fewer but larger growers producing potatoes and other vegetables (MAF 2005). The buttercup squash market is affected by competition from producers in Mexico, effectively capping growth in New Zealand production. Most squash is exported to Japan but alternative markets are being developed in countries such as South Korea (Ministry for Primary Industries 2012b).

The regional production of different crops is relatively stable from year to year. The South Auckland and Waikato regions are dominated by onion and potato production (3160 ha and 3280 ha respectively in 2011). Gisborne and the Hawke’s Bay are key producers of sweetcorn (2570 ha) and squash (5450 ha) as well as smaller areas in onions (850 ha), potatoes (420 ha in Hawke’s Bay only) and processing peas (2310 ha). The Manawatu-Wanganui region is dominated by potato crops (1210 ha) with minor areas of squash and sweetcorn. Process peas (530 ha) and sweetcorn (600 ha) are important crops in Marlborough. Otago has a small area in fresh market potato production (130 ha). Canterbury is the major vegetable-crop-growing region producing (in 2011) onions (810 ha), potatoes (5200 ha), peas (c. 3500 ha) and sweetcorn (220 ha), mostly for processing except for onions (MAF 2011; Statistics New Zealand 2012a).
Significant minor crops include kumara (variously known as sweet potato), dominated (1264 ha in 2009) by the Dargaville/Ruawai districts in Northland (Plant and Food Research 2011), beetroot and butternut, both with process markets in Hawke’s Bay, and tomatoes (processing varieties only). Carrots are grown in South Auckland, Manawatu/Ohakune and Canterbury: the carrot area declining between 2002 (1831 ha) and 2007 (1320 ha). Pumpkins and green beans are produced every year in several regions, totalling about 2000 hectares (Statistics New Zealand 2012c).

The primary market for kumara and pumpkins is domestic, while beetroot, beans and butternut are primarily grown for the processed market. Carrots are grown for the fresh and processed export markets and for juice products.

Opportunities

The process vegetable industry has considerable scope for expansion and has recently attracted significant investment. For example in 2011 Heinz Wattie’s New Zealand relocated its beetroot production from Australia to Hawke’s Bay, New Zealand. The move was to take advantage of the upgraded processing plant at Hastings and coincided with the investment in two new beetroot harvesters from Denmark. Production in 2012 was around 11 500 tonnes, four times the previous season, and forecasts for 2013 are for further expansion of production. This company also relocated the production of sauces and some other products to Hastings at the same time. It is expected that New Zealand can produce almost all of the volume of processing tomatoes needed for Heinz Wattie’s tomato paste production.

SHELTER

Shelter belts reduce wind speeds particularly on the lee side of the belt. Effective reductions in wind speed (up to 80% of open wind speed) are induced for distances of up to 20 times the shelter height but the greatest wind speed reductions are found three to five times the shelter height (Burke 1998). Lower wind speeds reduce evapotranspiration and increase temperature on the lee side of shelter (Sturrock 1972). Higher yields have been measured in a range of crops including cereals (Sturrock 1981) and grain legumes (Love et al. 1988). Other potential benefits include mitigation of pesticide drift; shelter can reduce drift by up to 80–90% (Ucar and Hall 2001).

Erosion of cultivated soils by wind can be a significant problem for arable farmers cultivating soil in the spring when wind runs are typically high, especially if soils are light and dry. Parts of Canterbury and central Hawke’s Bay are vulnerable to wind erosion, and shelterbelts planted to minimise wind erosion have been a feature of the landscapes in these regions (Hawke’s Bay Regional Council 2002). Losses of top soil have only occasionally been measured in New Zealand. Painter (1987) measured soil losses of 40 kg ha⁻¹ min⁻¹ in Canterbury during strong north-westerly winds. Soil loss in Hawke’s Bay has been recorded in winds as light as 20–25 km per hour (Hawke’s Bay Regional Council 2002).

Shelter can provide benefits for irrigation; reduced evapotranspiration reduces the need for irrigation. Savings in water consumption of 10–20% annually have been measured in Canterbury (Vries et al. 2010). Reduced wind speeds also benefit the operation of irrigation systems through improved application efficiency and uniformity.

Biodiversity on intensively farmed land is increased by the presence of shelterbelts, particularly insects and birds (Hawke’s Bay Regional Council 2006). Species choice can greatly affect the beneficial effect for different bird species, including native species. Providing tree/shrub species, both native and exotic, that produce flowers and fruit at key times can result in increased numbers of native species, which are otherwise unable to utilise arable ecosystems. Shelterbelts planted with the appropriate species, for example tagasaste (Chamaecytisus palensis), can also provide pollen for bees at critical times of the year; bees are crucial pollinators of seed crops including white clover and brassica species (Foundation for Arable Research 2007c). Bees will also benefit from the shelter effect through increased temperatures allowing them to forage for a greater part of the day in cool weather. There are some negative aspects to shelter, principally a reduction in crop production in the vicinity of the belt due to shade and competition for water and nutrients (Gillingham and Hawke 1997). The presence of shelter belts can increase crop damage by birds, especially sparrows and finches (Foundation for Arable Research 2010).

INDUSTRY ISSUES

Irrigation

There is an estimated 1.3 million hectares of irrigable land in Canterbury, of which 500 000 hectares are estimated to be currently irrigated (Environment Canterbury 2011), about 70% of the national total. Of the land that is potentially or currently irrigated, about 684 000 hectares are land use capability I, II or III, suitable for arable cropping (Saunders and Saunders 2012). Other estimates for currently irrigated land in Canterbury are lower than this – 385 000 hectares (Statistics New Zealand 2008b). However, access to water for additional irrigation is now very restricted because the available water, both surface and ground, is fully allocated in many areas (Aitchison-Earl et al. 2004; Tricker et al. 2012). Increasing the availability of water for irrigation is a key component of the Canterbury Water Management Strategy. The economic benefits of irrigation are well documented and include increased productivity, increased economic activity and increased employment (Saunders and Saunders 2012). Among the irrigation schemes under development in Canterbury the schemes proposed for the Central Plains (Central Plains Water 2012) and the Waitohi Irrigation and Hydro Scheme in North Canterbury (Hurunui Water Project 2012) will enable about 120 000 hectares of additional land to be irrigated in the region. Both these schemes have been controversial and have been greatly modified as they progressed through the consenting process. There are also large irrigation proposals in the North Island; both the Ruataniwha Water Storage project in central Hawke’s Bay (Hawke’s Bay Regional Council 2012) and the Wairarapa Water Use Project (Greater Wellington Regional Council 2012) consider arable land.

Most irrigation in New Zealand is applied with sprinkler systems of various types. Traditional methods of irrigating include flood irrigation, particularly border-dyke. About 111 000 hectares were still being irrigated using this method in 2007, especially (64 000 ha) in Canterbury (Statistics New Zealand 2008b). Border-dyke irrigation is a particularly inefficient method of applying water. Its disadvantage is that the amount of water applied varies greatly with distance from the dyke; by the time water reaches the lower end of the borders the upper end will have received excess water meaning that drainage is inevitable. Apart from reducing water use efficiency the increased drainage increases the probability of nitrate leaching (Liburne et al. 2010). Border-dyke systems are being steadily replaced with sprinkler systems (Saunders and Saunders 2012).
The expansion of the irrigable area in Canterbury, and other regions with typically dry summers such as Wairarapa and Hawke’s Bay, will facilitate the further expansion of dairying. Irrigation is essential for intensive dairy systems to ensure pasture production during the summer–autumn dry period (Dynes et al. 2010; Moot et al. 2010). Experience in Canterbury has shown rapid land use change once irrigation schemes are established, principally to dairy (Dynes et al. 2010). Similarly, the proposed Ruataniwha scheme in Hawke’s Bay (Hawke’s Bay Regional Council 2012) and the Hurunui Scheme in North Canterbury (Hurunui Water Project 2009) are expected to result in considerable expansion of dairy production in those areas.

The growing awareness of the challenges of freshwater management and the need for consistency when addressing freshwater allocation issues and conflicts in different parts of the country has resulted in the Government’s ‘Fresh Start to Fresh Water’ initiative. A stakeholder group, the Land and Water Forum, was established to provide advice to Government on how to manage fresh water. The forum has produced a comprehensive set of recommendations aimed at establishing a common approach to freshwater management in New Zealand (Land and Water Forum 2012). A number of recommendations have the potential to influence arable production in the long term, including proposals to introduce water charges and tradable water rights. These suggestions are widely seen as necessary to ensure efficient use of water and to ensure the greatest economic return from allocation of water. This may result in arable farmers having to compete with other producers for water rights. The ability to successfully bid for these rights will ultimately depend on the profitability of arable compared with other land use options.

Land use change

Conversion of arable and mixed-arable farms to dairy is an ongoing issue, particularly in Canterbury. In 2012 there were 974 dairy farms in the Canterbury Region (Environment Canterbury 2012b) a 22% increase from the numbers recorded in 2007 (Statistics New Zealand 2008b). Arable and mixed-arable farmers converting to dairy production are attracted by a range of benefits including improved cashflow, absence of harvest risk and increased profitability (Ministry for Primary Industries 2012a). The loss of arable farms can eventually result in loss of key infrastructure, services and economies of scale. This is regarded as a threat to the arable industry (Pyke et al. 2004; MAF 2011; Hampton et al. 2012b). Nationally, dairy cow numbers are expected to increase by 2.3% in 2013 and between 1.5 and 2.0% annually to 2016 (Ministry for Primary Industries 2012b); some of this increase will probably be at the expense of arable production. The loss of arable land neighbouring large urban areas to urban and lifestyle block development is also a concern, particularly for vegetable producers in the Pukekohe area.

Conversely, dairy conversions provide opportunities for neighbouring arable farmers –provision of grazing for dairy replacements, and winter grazing for dairy cows, albeit with nitrate leaching risks (Dalley 2012). Supplements such as grain, straw, vegetable processing by-products, maize, whole-crop cereal and pasture silages are also sold to dairy farmers (Dynes et al. 2010). Additional benefits from this activity include reduced labour requirements, better cash flow and good income potential, particularly in years with feed shortages (Ministry for Primary Industries 2012a). However, disputes between arable and dairy farmers over supply, price and quality of forage have occurred, particularly when milk prices have declined and despite contracts being in place (MAF 2009). Determination of appropriate maize silage sampling protocols (de Fillipi et al. 2004) facilitated the development of the Maize Forage Purchase Contract and the Good Practice Guide for the trading of maize silage; both documents are available through the Foundation for Arable Research website (Foundation for Arable Research 2008b).

Another aspect of the conversion of land to dairy is the loss of shelter. Most modern irrigation systems are centre-pivot or linear-spray systems that are hindered by shelter belts, especially tall shelter, so existing shelter is usually removed during conversion (Tait and Cullen 2010). Ironically shelter can benefit sprinkler irrigation systems through reduced evaporation of falling droplets, reduced wind drift and improved uniformity of application (Goulter 2010). Evaporation can be as high as 10% and drift up to 20% in sprinkler systems during strong winds (Foundation for Arable Research 2010).

Climate change

Projected mean annual temperature change and mean annual precipitation change, based on an intermediate level of warming by 2100 (Scenario A1B) (Intergovernmental Panel on Climate Change 2000), indicates an increase in mean annual temperature of 0.9°C by 2040 and 2.1°C by 2090 for most regions in New Zealand, including Canterbury. The effect on rainfall is more variable; in many western regions rainfall is predicted to increase slightly (0–2.5%) by 2040 but in eastern regions, including Canterbury, rainfall is expected to decline (0 to −2.5%) (National Institute of Water and Atmospheric Research 2012). Higher atmospheric carbon dioxide levels and higher temperatures are predicted to increase potential yields of irrigated C$_3$ cereal crops by up to 20% whereas potential yields will decline in non-irrigated crops (Clark et al. 2012). This is because higher carbon dioxide levels will increase radiation use efficiency, and warmer temperatures, particularly in spring and autumn, will increase crop growth rates allowing more rapid canopy development, increasing radiation interception. In contrast, C$_4$ crops are not likely to benefit much from elevated carbon dioxide levels.

The negative effects of higher temperatures include increased evapotranspiration and reduce leaf area duration resulting in reduced yields when irrigation is not available. The impacts of temperature will vary with environment and crop; generally (cereals) where temperatures are currently below the optimum temperature for a particular crop, warming will be beneficial (Clark et al. 2012). Similarly, higher temperatures (and higher CO$_2$) may increase yield potential in irrigated seed crops; but increased temperatures may reduce pollen viability, reducing seed yields, and reduce seed germination and seed vigour (Hampton et al. 2012a).

There appears to be little prospect of developing crop cultivars with different responses to temperature because there is currently very little genetic variation for this trait. There is variation for crop maturity allowing use of later maturing cultivars to compensate for reduced leaf area duration in response to increased temperatures (Parent and Tardieu 2012). The indirect effects of temperature include the response of pests and diseases to warmer temperatures but these effects are currently difficult to predict (Clark et al. 2012). Increasing temperatures will challenge the adequacy of irrigation systems because higher temperatures will result in increased potential evapotranspiration and if yield potentials are to be realised most crops will require increased irrigation (Moot et al. 2010).
Nutrient management

Intensification of arable production systems, involving a shortened pastoral phase and increased use of irrigation and nitrogen fertiliser, has resulted in increased leaching of nitrate into groundwater (McKenzie et al. 2006) and subsequent contamination of streams, rivers and lakes. Nutrient loss from arable systems is an issue in many regions including Canterbury, Manawatu-Wanganui, Hawke’s Bay and the Waikato (Ministry for the Environment 2009). Limits on the amount of nitrogen lost from production systems are being written into regional plans. These plans are typically controversial because they require substantial reductions in nitrogen losses from some farming systems, including arable, with potential constraints on productivity. For example, Horizons Regional Council’s ‘One Plan’ has generated considerable opposition from those groups likely to be most affected, including arable farmers, particularly those producing vegetables on free-draining soils (Horticulture New Zealand 2012). The One Plan proposes limiting nitrate leaching to under 30 kg of nitrogen per hectare on land use capability classes II and III (Horizons 2012), indicating that nutrient budgeting will be a significant challenge for many arable farmers in this region. Those farmers in priority catchments (high nutrient levels in water) will require a resource consent regarding nutrient management. Environment Waikato requires farmers applying nitrogen at more than 60 kg ha$^{-1}$ year$^{-1}$ to have a nutrient management plan (Environment Waikato 2012). Environment Canterbury intends introducing a nitrogen threshold of 20 kg ha$^{-1}$ year$^{-1}$ for leached nitrate for developing, implementing and reporting a ‘farm environmental plan’ from 2017 (Environment Canterbury 2012a).

The leaching losses from arable crops can vary tremendously from year to year and with different crops. Webb et al. (2001) measured nitrate leaching under spring sown-wheat for 4 years in Canterbury and found that leached nitrogen ranged from 14 to 104 kg N ha$^{-1}$ year$^{-1}$ with most of the variation explained by variation in drainage. Drainage is influenced by rainfall, irrigation, irrigation method and by variation in soil depth. Shallow soils with limited water holding capacity result in more leaching (Lilburne and Webb 2002). Modelling of nitrate leaching at Hororata, Canterbury, has resulted in estimates of annual nitrogen losses ranging from 28 kg ha$^{-1}$ year$^{-1}$ on very light soils to 5.6 ha$^{-1}$ year$^{-1}$ on heavy soils. Estimates of leaching losses for other Canterbury locations (Lincoln and Darfield) were similar. Nitrate leaching can be very high when nitrogen fertiliser is applied in the autumn–winter period and crop recovery is limited by low temperatures (Cookson et al. 2001). Nitrogen losses of 114 kg (Francis et al. 2003) and 217 kg ha$^{-1}$ year$^{-1}$ (Crush et al. 1997) under winter potatoes have been measured at Pukenkohu. Similar losses have been reported from winter potatoes in Oamaru after high nitrogen fertiliser application rates (Williams and Tregurtha 2003).

Irrigation may increase drainage and leaching, particularly border-dyke systems (Lilburne et al. 2010). Minimising drainage means ensuring that irrigation does not result in soil moisture reaching field capacity (McDowell and Houibrooke 2008) and, ideally, is scheduled to ensure soil moisture does not fall below the point at which potential yield declines (trigger point) in that crop, usually about 50% of field capacity (Foundation for Arable Research 2011b). Much of the Canterbury Plains consists of shallow, stony, free-draining soils (Molloy 1993) with limited water holding capacity and, consequently, susceptible to nitrate leaching.

Nitrate leaching can also be an issue for arable farmers growing forage crops to provide winter grazing for dairy cows. Whether on pasture or forage crops high stocking rates and wet soils can result in large nutrient losses during rainfall events, particularly if on shallow free-draining soils (Smith et al. 2012). Nitrogen losses ranged from 8.5 kg to 125 ha$^{-1}$ in different years in this study. Nitrate leaching under grazed forage crops is also primarily associated with the return of urine (McDowell and Houibrooke 2008; Beare et al. 2010). Mitigation strategies include restricted grazing intervals with the use of standoff pads (McDowell and Houibrooke 2008). Nitrification inhibitors (dicyandiamide (DCD) may be used to help reduce losses when grazing forage crops over the winter with conflicting results; Smith et al. (2012) found it to be ineffective applied on free-draining soils whereas Shepherd et al. (2012) found it reduced nitrate leaching by up to 27% on free-draining soils. This difference is probably explained by the timing of application; delayed application post-grazing may reduce the effectiveness of DCD. Dicyandiamide may also reduce nitrous oxide emissions from grazed forage crops (van der Weerden and Styles 2012).

Many regional councils currently use OVERSEER® to model nutrient losses under different production and management systems (Environment Canterbury 2012a; Horizons 2012). OVERSEER® was initially developed to model nutrient loading in pastoral systems but has recently been adapted for use with arable crops (Chichota et al. 2010). Consequently there are questions about its use for arable systems, particularly if used to monitor compliance. The Foundation for Arable Research has recently published the findings of a review of the suitability of OVERSEER® version 6 for the arable industry. This review found that OVERSEER® was the best tool currently available for modelling the leaching of nitrate but that the recent addition of the capability to model nutrient movement in crops has not been fully tested under the full range of crops, crop rotations and environments in New Zealand (Dunbier et al. 2013). Estimates of nitrate leached are most dependent on the amount of mineral nitrogen in the soil profile, drainage, and a key coefficient (‘a’) in the prediction model. Shortcomings were identified in each of these components in the OVERSEER® crop model. The review also suggested that the limitations of the model needed to be considered by regional authorities when framing nutrient management policies.

Minimising drainage is an important strategy for reducing nitrate leaching; management to minimise leaching of nitrate over the autumn–winter period when the highest risk of drainage occurs includes ensuring nitrogen fertiliser applications are judicious and that crops are actively growing, particularly on shallow soils (Lilburne et al. 2003). If ground is to be left fallow over the winter, the use of cover crops can greatly reduce the amount of nitrate available to be leached. Soil nitrate levels are increased by cultivation, a consequence of stimulated mineralisation of soil organic nitrogen (Haynes 1999). The use of no-tillage systems has been shown to reduce leaching of nitrate compared with conventional cultivation (Pearson and Wilson 2002/2003).

Matching fertiliser demand to crop requirements is a key aspect of crop management to minimise the risk of nitrate leaching but it is also important for maximising economic returns from applying nitrogen fertiliser. Decision support systems have been developed for a range of crops including wheat (Sirius) (Jamieson et al. 1998), maize (Amazin) (Li et al. 2006) and potatoes (Potato Calculator) (Jamieson et al. 2004). Experience with the use of these models indicates that significant savings in nitrogen fertiliser can often be made, reducing the potential for nitrate leaching, without reducing yield (Armour et al. 2002; Jamieson et al. 2006).
Biosecurity

Biosecurity is an ongoing concern for arable farmers, and vegetable growers in particular. Each crop has its own biological threats with the potential to greatly reduce production and economic returns in both the short and long term. Biosecurity issues are constantly evident; the PSa and tomato/potato psyllid incursions of recent years are good examples of the damage a new pathogen or biological agent can have on primary production. The Ministry for Primary Industries maintains a register of unwanted organisms (Ministry for Primary Industries 2013b); it is a large list and ensuring that future incursions are kept to a minimum will require ongoing commitment from government and industry (Horticulture New Zealand 2011).

REFERENCES

Claridge NH 1972. Arable farm crops of New Zealand. Lincoln, DSIR.

