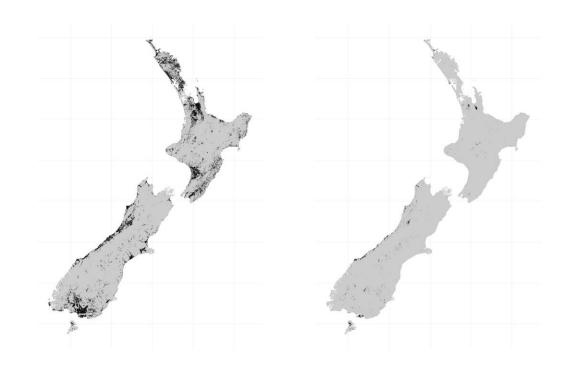


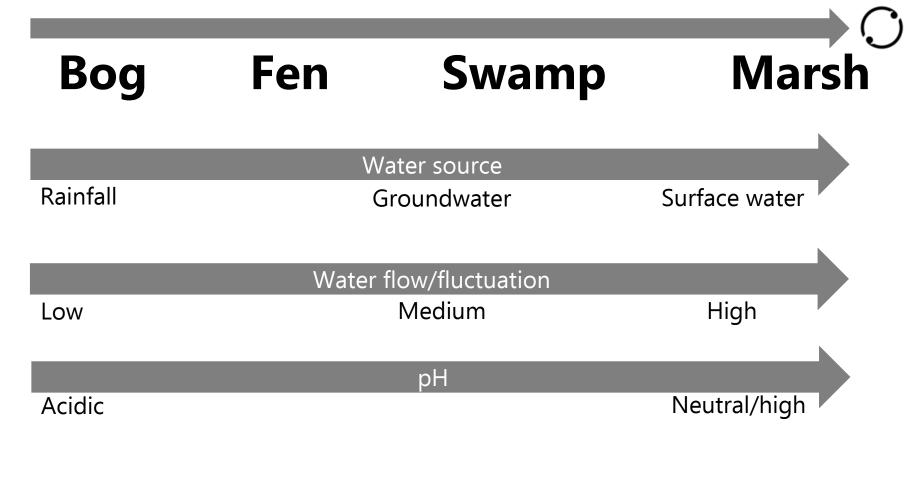
Wetlands & nutrients

Olivia Burge

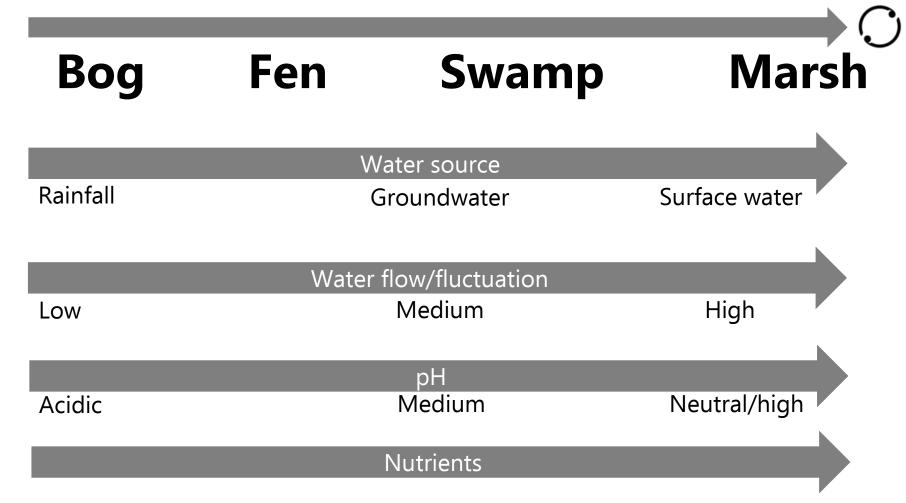


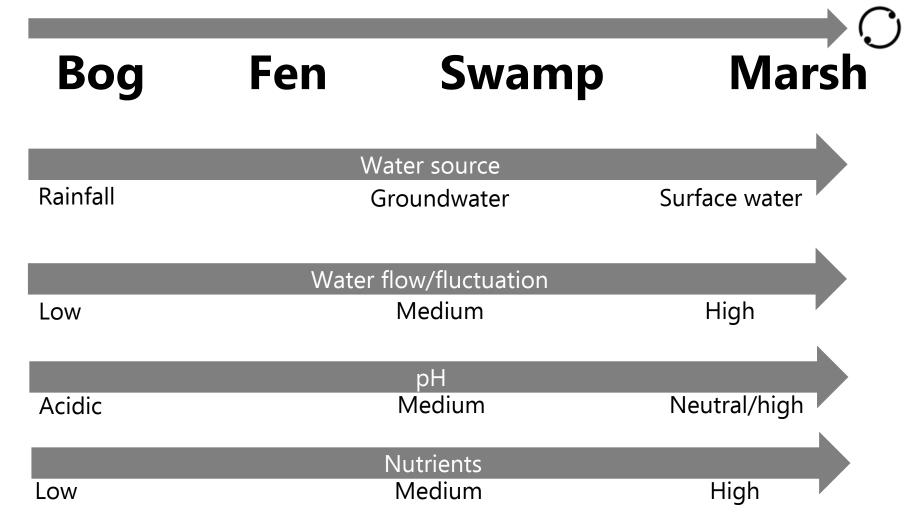
Nutrients are important

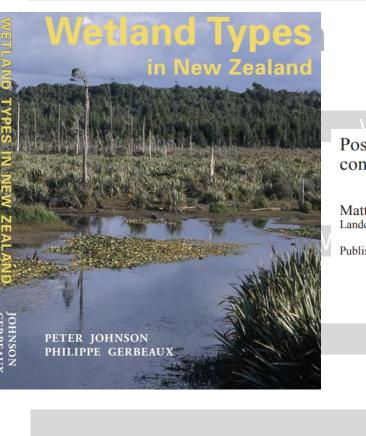
- Affect natural plant communities
- Weeds [willow (*Salix*), reed sweet grass (*Glyceria*), royal fern (*Osmunda*)]... & raupō (*Typha*)
- Reflect changes in wider environment



Wetland nutrients vary naturally by wetland type




September


PAGE 6

.OW

б Ш ()

Swamp

Marsh

Mater source

Postglacial history of New Zealand wetlands and implications for their conservation

Matt S. McGlone Landcare Research, PO Box 40, Lincoln 7640, New Zealand (Email:mcglonem@landcareresearch.co.nz)

Published on-line: 9 March 2009

Iviedium	підп
рН	
Medium	Neutral/high
Nutrients	
Medium	High

Nutrients can change within wetlands

• Wetland soil nutrients can differ naturally

Nutrients can change within wetlands

- Wetland soil nutrients can differ naturally
- But all can be affected by **anthropogenic input**
 - Surface water flow
 - Aerial deposition
 - Drains! (Otakairangi, Northland[1])

[1] Douglas (2019) MSc thesis Waikato

- "N" means nitrogen
- "P" means phosphorus

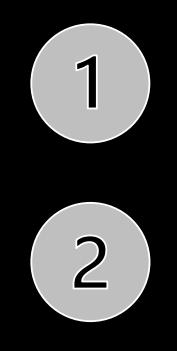
PAGE 12

MANAAKI WHENUA - LANDCARE RESEARCH

PAGE 13

So how to detect (ecologically relevant) anthropogenic input?

Limitations of soil nutrient testing


- 1. Total soil N & P
- 2. Plant available soil N & P

Plants as bio-indicators

- 1. Total soil N & P
- 2. Plant available soil N & P
- 3. Foliage N & P ('Blood tests' for plants)

- LANDCARE RESEARCH

MANAAKI WHENUA

Predict whether N or P is more 'limiting' using the **N:P ratio**

Correlate foliar N & P to soil N & P

Predict whether N or P is more 'limiting' using the **N:P ratio**

Which nutrient will have the most effect? The foliar N:P ratio

- Looks at the relative amount
- N:P ratio
 - High ratio number suggests P limitation
 - Low ratio number suggests N limitation
- Need to add both nutrients to see which provokes a response in the vegetation
- Work established it as an indicator for wetlands in the 90s

 Ō Tū Wharekai (Ashburton Lakes)

Photo credit: Chris Tanner/NIWA

ORIGINAL ARTICLE

Plant responses to nutrient addition and predictive ability of vegetation N:P ratio in an austral fen

Olivia Rata Burge^{1,2} | Beverley R. Clarkson³ | Kerry A. Bodmin² | Scott Bartlam³ | Hugh A. Robertson⁴ | James P. S. Sukias² | Chris C. Tanner²

- Ō Tū Wharekai (Ashburton Lakes)
- Vegetation N:P predicted Nlimitation

Photo credit: Chris Tanner/NIWA

ORIGINAL ARTICLE

Plant responses to nutrient addition and predictive ability of vegetation N:P ratio in an austral fen

Olivia Rata Burge^{1,2} | Beverley R. Clarkson³ | Kerry A. Bodmin² | Scott Bartlam³ | Hugh A. Robertson⁴ | James P. S. Sukias² | Chris C. Tanner²

- Ō Tū Wharekai (Ashburton Lakes)
- Vegetation N:P predicted Nlimitation
- Realistic 'farm run-off' levels of N and P added for four years

Photo credit: Chris Tanner/NIWA

ORIGINAL ARTICLE

Plant responses to nutrient addition and predictive ability of vegetation N:P ratio in an austral fen

Olivia Rata Burge^{1,2} | Beverley R. Clarkson³ | Kerry A. Bodmin² | Scott Bartlam³ | Hugh A. Robertson⁴ | James P. S. Sukias² | Chris C. Tanner²

22

September

- Ō Tū Wharekai (Ashburton Lakes)
- Vegetation N:P predicted Nlimitation
- Realistic 'farm run-off' levels of N and P added for four years
- Above-ground biomass harvested after four years

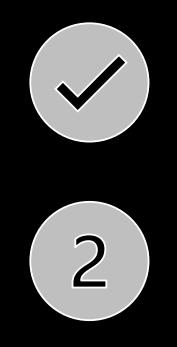
Photo credit: Chris Tanner/NIWA

ORIGINAL ARTICLE

Plant responses to nutrient addition and predictive ability of vegetation N:P ratio in an austral fen

Olivia Rata Burge^{1,2} | Beverley R. Clarkson³ | Kerry A. Bodmin² | Scott Bartlam³ | Hugh A. Robertson⁴ | James P. S. Sukias² | Chris C. Tanner²

22


September

N:P ratio predicted response to fertilisation

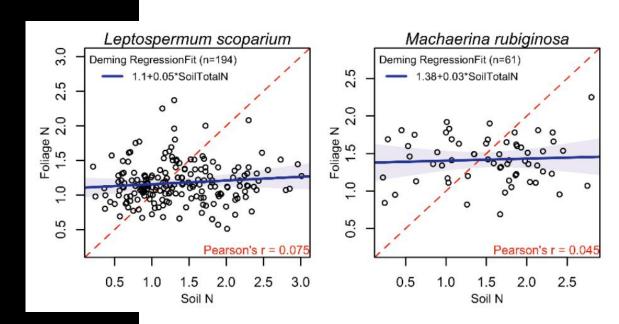
- ✓ Increase in biomass (28%) with N
- ✓ No biomass response to P

Photo credit: Nelson Boustead

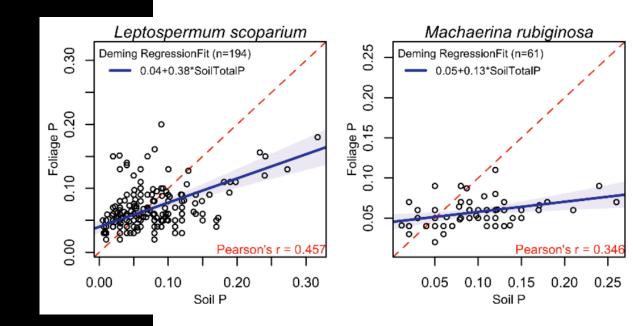
Predict whether N or P is more 'limiting' using the **N:P ratio**

Correlate foliar N & P to soil N & P

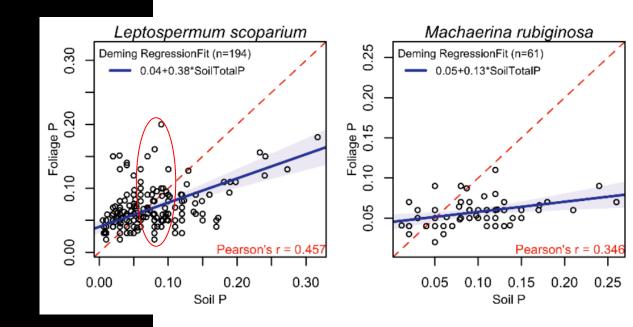
- PAGE 3
- Relationship doesn't need to be 1:1
- Because of 'luxury' P uptake, expect a stronger relationship with P
- Used the NZ wetland database, + data from councils (n > 1600)
- Single species analysis (n = 12)


- Relationship doesn't need to be 1:1
- Because of 'luxury' P uptake, expect a stronger relationship with P
- Used the NZ wetland database, + data from councils (n > 1600)
- Single species analysis (n = 12)

Wetland plant foliage nutrients as indicators of soil nutrients


Envirolink Grant: 2123-HBRC260

Olivia R Burge, Beverley R Clarkson, Andre Eger, Neil Fitzgerald Manaaki Whenua – Landcare Research • No for soil N


Correlate foliage & soil

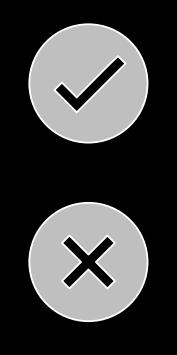
- No for soil N
- Better but probably not good enough for soil P

Correlate foliage & soil

- No for soil N
- Better but probably not good enough for soil P

• Species selection – rarer species vs dominant species

- Species selection rarer species vs dominant species
- Using the H' index!
 - H' == nutrient conservatism (or not)



- Species selection rarer species vs dominant species
- Using the H' index!
 - H' == nutrient conservatism (or not)
 - Take the average of all the species in the plot

- Species selection rarer species vs dominant species
- Using the H' index!
 - H' == nutrient conservatism (or not)
 - Take the average of all the species in the plot
 - Allows cessation of foliage monitoring once enough species have an H' index

Predict whether N or P is more 'limiting' using the **N:P ratio**

[at this time] Correlate foliar N & P to soil N & P

PAGE 35

LANDCARE RESEARCH

MANAAKI WHENUA

22

September

- Biomass response from new species
- Time-lag may differ among plant communities

- Biomass response from new species
- Time-lag may differ among plant communities
- With increasing amounts of plot data available how do plant communities change along nutrient gradients

- Biomass response from new species
- Time-lag may differ among plant communities
- With increasing amounts of plot data available how do plant communities change along nutrient gradients
- [not change *within* a wetland]

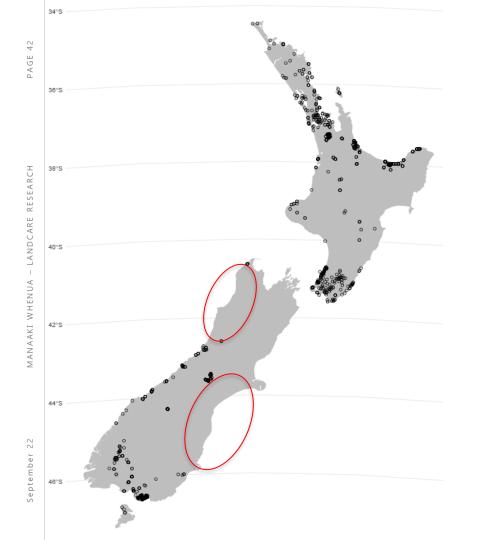
- Biomass response from new species
- Time-lag may differ among plant communities
- With increasing amounts of plot data available how do plant communities change along nutrient gradients
- [not change *within* a wetland]

MANAAKI WHENUA - LANDCARE RESEARCH

September

PAGE 40

A classification clusters vegetation plots into 'groups'


160

DOI: 10.20417/nzjecol.40.18

Expanding an existing classification of New Zealand vegetation to include non-forested vegetation

Susan K. Wiser^{1*†}, Fiona J. Thomson^{1†} and Miquel De Cáceres^{2,3}

A classification clusters vegetation plots into 'groups'

Progress to date

Key questions

- Do we have enough data to reflect NZ wetland diversity – across wetland types?
- How tightly are plant communities linked to soil N and P?

Summary

Early work – we can predict whether N or P is more 'limiting' using the N:P ratio

We cannot yet correlate foliar N & P to soil N & P and infer change

We may be able to better link foliar and soil N & P

We are working to classify NZ's wetland vegetation and link it to soil nutrients